The simulation and optimization of vehicle ride comfort based on vehicle dynamic model with five degrees of freedom

Author(s):  
Hao Liu ◽  
Hong Zhou ◽  
Junjie Chen
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Peng Guo ◽  
Jiewei Lin ◽  
Zefeng Lin ◽  
Jinlu Li ◽  
Chi Liu ◽  
...  

The ride comfort and the cargo safety are of great importance in the vibration design of heavy-duty vehicle. Traditional ride comfort design method based on the response of components of vehicles or interaction between human and seat overlooks the most direct criterion, the response of occupants, which makes the optimisation not targeted enough. It will be better to conduct the ride comfort design with the biodynamic response of driver. To this end, a 17-degrees-of-freedom (DOFs) vertical-pitch-roll vehicle dynamic model of a three-axle heavy-duty truck coupled with a 7 DOFs human model is developed. The ride comfort of human body under the vertical, the pitch, and the roll vibrations can be evaluated with the weighted root-mean-square (r.m.s.) acceleration of the driver in multiple directions. The flexibilities of chassis and carriage are also considered to improve the accuracy of the prediction of the ride comfort and to constrain the mounting optimisation of cab and carriage. After validation, the sensitivity analysis of the mounting system, the suspensions, and arrangement of sprung masses is carried out and significant factors to ride vibration are identified. The optimal combination of design parameters is obtained with the objective of minimizing the vibration of the driver and carriage simultaneously. The optimisation result shows that the weighted driver vibration is reduced by 27.9% and the carriage vibration is reduced by 31.8% at various speeds.


2015 ◽  
Vol 18 (4) ◽  
pp. 77-84
Author(s):  
Nhan Huu Tran ◽  
Lam Quang Tran ◽  
Duc Tran ◽  
Hung Dinh Nguyen

To be able to analyze the dynamic features comprehensively and more fully in both the lateral and vertical cases for a threewheeled motorbike (TWM), which have been designed and manufactured by the same group of authors and based on to conduct design improvements, the planar vehicle dynamic model (single track) with 03 degrees of freedom (03-DOF) & the vertical dynamic model with 06 degrees of freedom (06-DOF) have been employed. The parameters used in the calculations are based on existing designs from realistic models manufactured through the combination of experimental measurements and theoretical calculation methods empirically. The lateral dynamic calculated results were based on to investigate the dynamic stability when cornering or steering of a 03-wheeled motorbike. In addition, dynamic calculated results were analyzed also in the frequency domain and basec on to help improve the design featurers with more comfortable and safer.


2001 ◽  
Author(s):  
Gene Y. Liao

Abstract Many general-purpose and specialized simulation codes are becoming more flexible which allows analyses to be carried out simultaneously in a coupled manner called co-simulation. Using co-simulation technique, this paper develops an integrated simulation of an Electric Power Steering (EPS) control system with a full vehicle dynamic model. A full vehicle dynamic model interacting with EPS control algorithm is concurrently simulated on a single bump road condition. The effects of EPS on the vehicle dynamic behavior and handling responses resulting from steer and road input are analyzed and compared with proving ground experimental data. The comparisons show reasonable agreement on tie-rod load, rack displacement, steering wheel torque and tire center acceleration. This developed co-simulation capability may be useful for EPS performance evaluation and calibration as well as for vehicle handling performance integration.


2019 ◽  
Vol 26 (1-2) ◽  
pp. 3-18
Author(s):  
Dao-Yong Wang ◽  
Wen-Can Zhang ◽  
Xia-Guang Zeng

In order to reduce the shock and vibration caused by torque disturbance of the gearbox in vehicles equipped with automatic transmission in the process of in situ shift, a novel semi-active hydraulic damping strut is introduced in the powertrain mounting system. The dynamic response evaluation indexes of vehicle in situ shift are put forward, and a 13-degree of freedom vehicle dynamic model including the semi-active hydraulic damping strut is established. The optimized dynamic characteristic parameters are acquired according to the principle of sharing force and the 13-degree of freedom vehicle dynamic model. The dynamic response evaluation indexes with and without the semi-active hydraulic damping strut are calculated using the 13-degree of freedom vehicle dynamic model in the process of in situ shift, and the calculation results show that the vibration of a vehicle can be reduced by the introduction of a semi-active hydraulic damping strut. Experiments are carried out to analyze the vibration response of the vehicle with and without a semi-active hydraulic damping strut, and the results show that the shock and vibration of the vehicle are reduced by introducing the semi-active hydraulic damping strut. The theoretical calculation values of active-side acceleration of the engine mount and torque strut are consistent with the experimental values, which show that the 13-degree of freedom vehicle dynamic model is reasonable.


Author(s):  
Shuhua Su ◽  
Gang Chen

In order to achieve stable steering and path tracking, a lateral robust iterative learning control method for unmanned driving robot vehicle is proposed. Combining the nonlinear tire dynamic model with the vehicle dynamic model, the nonlinear vehicle dynamic model is constructed. The structure of steering manipulator of unmanned driving robot vehicle is analyzed, and the kinematics model and dynamics model of steering manipulator of unmanned driving robot vehicle are established. The structure of vehicle steering system is analyzed, and the dynamic model of vehicle steering system is established. Vehicle steering angle model is established by taking vehicle path tracking error and vehicle yaw angle error as input. Combining with the typical iterative learning control law, the robust term is added to the control law, and a robust iterative learning controller for steering manipulator system of unmanned driving robot vehicle is designed. The proposed controller’s stability and astringency are proved. The effectiveness of the proposed method is verified by comparing it with other control methods and human driver simulation tests.


Sign in / Sign up

Export Citation Format

Share Document