Study of Alignment & Overlay Strategy in 14 nm Lithography Process

Author(s):  
Lulu Lai ◽  
Rui Qian ◽  
Biqiu Liu ◽  
Xiaobo Guo ◽  
Cong Zhang ◽  
...  
Keyword(s):  
1999 ◽  
Vol 35 (15) ◽  
pp. 1283 ◽  
Author(s):  
S. Michel ◽  
E. Lavallée ◽  
J. Beauvais ◽  
J. Mouine

2018 ◽  
Vol 282 ◽  
pp. 59-63
Author(s):  
Hyun Tae Kim ◽  
Nagendra Prasad Yerriboina ◽  
Hee Jin Song ◽  
Jin Goo Park

For EUV lithography, a reflective mask is essential because of use of the strong energy, wavelength of 13.5 nm. The EUV mask consists of multi-layered, multi-material structure and is susceptible to various contaminants. Since EUV lithography process should be used in a high vacuum environment, an electrostatic chuck (ESC) is used to fix or hold the EUV mask using electrostatic force. In general, in order to use ESC chuck, it needs a thin conductive layer (CrN layer) on the backside. However, the contact points of the electrostatic pin chuck can make exfoliation of conductive CrN layer producing CrN particles. If these particles are present on the backside of the mask, CD or DOF may be affected during EUV exposure. The 1 μm particle can leads to a gap radius of 42mm [4]. Moreover, these backside particles may travel to the front side. Therefore, backside cleaning should be performed to remove particles from the mask backside surface.


1989 ◽  
Vol 145 ◽  
Author(s):  
H. Temkin ◽  
L. R. Harriott ◽  
J. Weiner ◽  
R. A. Hamm ◽  
M. B. Panish

AbstractWe demonstrate a vacuum lithography process which uses a finely focused Ga ion beam to write the pattern which is then transferred to the InP pattern by low energy dry etching. Surface steps on the order of 1000-2000A in height, and lateral resolution limited only by size of the ion beam, can be efficiently prepared using moderate Ga ion fluences. The surfaces prepared by this process are damage free and suitable for epitaxial overgrowth. GaInAs/InP heterostructures grown on in-situ patterned substrates show excellent morphology and high luminescence efficiency.


RSC Advances ◽  
2015 ◽  
Vol 5 (126) ◽  
pp. 103901-103906 ◽  
Author(s):  
Fuyun He ◽  
Zhisheng Zhang

In semiconductor manufacturing, the multilayer overlay lithography process is a typical multistage manufacturing process; one of the key factors that restrict the reliability and yield of integrated circuit chips is overlay error between the layers.


2019 ◽  
Vol 25 ◽  
pp. 83-88
Author(s):  
Markus Wimmer ◽  
Zoltan Major

The paper describes the possibilities of additive manufacturing with multiphoton lithography. The basis of this technology is that a laser beam (with a certain wavelength) is fired into the mixture of a monomer and a photo-initiator. When the energy of the laser is high enough, the latter acts as a catalyser for the polymerization of the monomer compound. This study focuses on the influences of certain parameters of the multiphoton lithography process. One of the important aspects is the choice of the solvent for the post processing. In sequence to the solvent problem, the influence of the layer height is examined. Furthermore the limits and possibilities of the setup in use are investigated. As an example the differences in fabrication with the laser firing with "constant frequency" and "constant density" were subject of this investigation. The second goal of the study was to compare three different structures consisting of periodically repeating elements, scaled in size and number of elements per side.


Sign in / Sign up

Export Citation Format

Share Document