Connected operators on 3D data for human body analysis

Author(s):  
Marcel Alcoverro ◽  
Adolfo Lopez-Mendez ◽  
Montse Pardas ◽  
Josep R. Casas
Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3690
Author(s):  
Andrés Fuster-Guilló ◽  
Jorge Azorín-López ◽  
Marcelo Saval-Calvo ◽  
Juan Miguel Castillo-Zaragoza ◽  
Nahuel Garcia-D’Urso ◽  
...  

This research aims to improve dietetic-nutritional treatment using state-of-the-art RGB-D sensors and virtual reality (VR) technology. Recent studies show that adherence to treatment can be improved using multimedia technologies. However, there are few studies using 3D data and VR technologies for this purpose. On the other hand, obtaining 3D measurements of the human body and analyzing them over time (4D) in patients undergoing dietary treatment is a challenging field. The main contribution of the work is to provide a framework to study the effect of 4D body model visualization on adherence to obesity treatment. The system can obtain a complete 3D model of a body using low-cost technology, allowing future straightforward transference with sufficient accuracy and realistic visualization, enabling the analysis of the evolution (4D) of the shape during the treatment of obesity. The 3D body models will be used for studying the effect of visualization on adherence to obesity treatment using 2D and VR devices. Moreover, we will use the acquired 3D models to obtain measurements of the body. An analysis of the accuracy of the proposed methods for obtaining measurements with both synthetic and real objects has been carried out.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kyu Sun Lee ◽  
Hwa Kyung Song

AbstractThe aim of this study is to develop an automated process for modeling average 3D human body according to body types using both NUBRS-based modeling software Rhinoceros 3D® (Rhino) and Grasshopper as an algorithm editor. First, we categorized men aged 36 to 55 years included in SizeUSA 3D data into the three body types (normal, overweight, and obese), and selected seven samples in each body type. To execute the automated process of generating an average 3D model of their lower bodies in a step-by-step manner, the following procedures were performed: (1) Determine the main reference lines on the 3D-scanned lower bodies, including six horizontal reference lines and six vertical reference lines; (2) Create horizontal and vertical line grids and intersection points (3) Generate an average 3D model in a position that corresponds to the average coordinates of the intersection points (vertex coordinates) of seven samples for each body type. A Grasshopper algorithm was formulated to automatically execute all procedures that had to be repeatedly performed. As a way to verify the average model’s size and shape, the girth measurements of the samples for each body type were averaged, and the results were compared with those of the 3D average body shape. It was found that the deviation was less than 1 cm, which indicates the validity of the 3D modeling approach applied in the present study. Each process was incorporated into commands available in the Rhino interface, and this automation allowed a number of 3D body shape modeling operations to be implemented in a significantly reduced time period.


Author(s):  
D. F. Redaelli ◽  
S. Gonizzi Barsanti ◽  
P. Fraschini ◽  
E. Biffi ◽  
G. Colombo

Low-cost 3D sensors are nowadays widely diffused and many different solutions are available on the market. Some of these devices were developed for entertaining purposes, but are used also for acquisition and processing of different 3D data with the aim of documentation, research and study. Given the fact that these sensors were not developed for this purpose, it is necessary to evaluate their use in the capturing process. This paper shows a preliminary research comparing the Kinect 1 and 2 by Microsoft, the Structure Sensor by Occipital and the O&P Scan by Rodin4D in a medical scenario (i.e. human body scans). In particular, these sensors were compared to Minolta Vivid 9i, chosen as reference because of its higher accuracy. Different test objects were analysed: a calibrated flat plane, for the evaluation of the systematic distance error for each device, and three different parts of a mannequin, used as samples of human body parts. The results showed that the use of a certified flat plane is a good starting point in characterizing the sensors, but a complete analysis with objects similar to the ones of the real context of application is required. For example, the Kinect 2 presented the best results among the low-cost sensors on the flat plane, while the Structure Sensor was more reliable on the mannequin parts.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Seokmin Yun ◽  
Jaewon Choi ◽  
Chee Sun Won

This paper proposes a registration method for two sets of point clouds obtained from dual Kinect V2 sensors, which are facing each other to capture omnidirectional 3D data of the objects located in between the two sensors. Our approach aims at achieving a handy registration without the calibration-assisting devices such as the checker board. Therefore, it is suitable in portable camera setting environments with frequent relocations. The basic idea of the proposed registration method is to exploit the skeleton information of the human body provided by the two Kinect V2 sensors. That is, a set of correspondence pairs in skeleton joints of human body detected by Kinect V2 sensors is used to determine the calibration matrices, then Iterative Closest Point (ICP) algorithm is adopted for finely tuning the calibration parameters. The performance of the proposed method is evaluated by constructing 3D point clouds for human bodies and by making geometric measurements for cylindrical testing objects.


Author(s):  
Shulin Wen ◽  
Jingwei Feng ◽  
A. Krajewski ◽  
A. Ravaglioli

Hydroxyapatite bioceramics has attracted many material scientists as it is the main constituent of the bone and the teeth in human body. The synthesis of the bioceramics has been performed for years. Nowadays, the synthetic work is not only focused on the hydroapatite but also on the fluorapatite and chlorapatite bioceramics since later materials have also biological compatibility with human tissues; and they may also be very promising for clinic purpose. However, in comparison of the synthetic bioceramics with natural one on microstructure, a great differences were observed according to our previous results. We have investigated these differences further in this work since they are very important to appraise the synthetic bioceramics for their clinic application.The synthetic hydroxyapatite and chlorapatite were prepared according to A. Krajewski and A. Ravaglioli and their recent work. The briquettes from different hydroxyapatite or chlorapatite powders were fired in a laboratory furnace at the temperature of 900-1300°C. The samples of human enamel selected for the comparison with synthetic bioceramics were from Chinese adult teeth.


Author(s):  
Douglas L. Dorset

The quantitative use of electron diffraction intensity data for the determination of crystal structures represents the pioneering achievement in the electron crystallography of organic molecules, an effort largely begun by B. K. Vainshtein and his co-workers. However, despite numerous representative structure analyses yielding results consistent with X-ray determination, this entire effort was viewed with considerable mistrust by many crystallographers. This was no doubt due to the rather high crystallographic R-factors reported for some structures and, more importantly, the failure to convince many skeptics that the measured intensity data were adequate for ab initio structure determinations.We have recently demonstrated the utility of these data sets for structure analyses by direct phase determination based on the probabilistic estimate of three- and four-phase structure invariant sums. Examples include the structure of diketopiperazine using Vainshtein's 3D data, a similar 3D analysis of the room temperature structure of thiourea, and a zonal determination of the urea structure, the latter also based on data collected by the Moscow group.


Author(s):  
Tong Wensheng ◽  
Lu Lianhuang ◽  
Zhang Zhijun

This is a combined study of two diffirent branches, photogrammetry and morphology of blood cells. The three dimensional quantitative analysis of erythrocytes using SEMP technique, electron computation technique and photogrammetry theory has made it possible to push the study of mophology of blood cells from LM, TEM, SEM to a higher stage, that of SEM P. A new path has been broken for deeply study of morphology of blood cells.In medical view, the abnormality of the quality and quantity of erythrocytes is one of the important changes of blood disease. It shows the abnormal blood—making function of the human body. Therefore, the study of the change of shape on erythrocytes is the indispensable and important basis of reference in the clinical diagnosis and research of blood disease.The erythrocytes of one normal person, three PNH Patients and one AA patient were used in this experiment. This research determines the following items: Height;Length of two axes (long and short), ratio; Crevice in depth and width of cell membrane; Circumference of erythrocytes; Isoline map of erythrocytes; Section map of erythrocytes.


1998 ◽  
Vol 23 (4) ◽  
pp. 382-387 ◽  
Author(s):  
James O. Ochanda ◽  
Eva A. C. Oduor ◽  
Rachel Galun ◽  
Mabel O. Imbuga ◽  
Kosta Y. Mumcuoglu

Sign in / Sign up

Export Citation Format

Share Document