A GUI for Urban Wind Flow CFD Analysis of Small Scale Wind Applications

Author(s):  
Anders Goude ◽  
Bahri Uzunoglu ◽  
Gabriele Giovannini ◽  
Javier Magdalena ◽  
Antonio Fernandez
Keyword(s):  
2021 ◽  
Author(s):  
S. J. van der Spuy ◽  
D. N. J. Els ◽  
L. Tieghi ◽  
G. Delibra ◽  
A. Corsini ◽  
...  

Abstract The MinWaterCSP project was defined with the aim of reducing the cooling system water consumption and auxiliary power consumption of concentrating solar power (CSP) plants. A full-scale, 24 ft (7.315 m) diameter model of the M-fan was subsequently installed in the Min WaterCSP cooling system test facility, located at Stellenbosch University. The test facility was equipped with an in-line torque arm and speed transducer to measure the power transferred to the fan rotor, as well as a set of rotating vane anemometers upstream of the fan rotor to measure the air volume flow rate passing through the fan. The measured results were compared to those obtained on the 1.542 m diameter ISO 5801 test facility using the fan scaling laws. The comparison showed that the fan power values correlated within +/− 7% to those of the small-scale fan, but at a 1° higher blade setting angle for the full-scale fan. To correlate the expected fan static pressure rise, a CFD analysis of the 24 ft (7.315 m) diameter fan installation was performed. The predicted fan static pressure rise values from the CFD analysis were compared to those measured on the 1.542 m ISO test facility, for the same fan. The simulation made use of an actuator disc model to represent the effect of the fan. The results showed that the predicted results for fan static pressure rise of the installed 24 ft (7.315 m) diameter fan correlated closely (smaller than 1% difference) to those of the 1.542 m diameter fan at its design flowrate but, once again, at approximately 1° higher blade setting angle.


2018 ◽  
Vol 878 ◽  
pp. 70-75 ◽  
Author(s):  
Jang Youl You ◽  
Sun Young Paek ◽  
Doo Kie Kim ◽  
Ki Pyo You

Soundproof tunnels and soundproof walls constructed on expressways are designed to prevent noise for the nearby surrounding residential areas. These soundproof walls and tunnels feature excellent noise prevention for residential areas nearby, but they hamper the dispersion of air pollutants generated, thus promoting the creation of heat islands during summer and cold islands during winter.The computational fluid dynamics (CFD) analysis method was used to investigate the wind flow around soundproof tunnels. The wind angle and the size of the wind velocity were determined using data from weather stations near soundproof tunnels. The CFD analysis results of the soundproof tunnels on expressways revealed that the wind velocity decreased by 30–60% following the installation of soundproof tunnels.


2016 ◽  
Vol 837 ◽  
pp. 1-4
Author(s):  
Roland Antal ◽  
Norbert Jendzelovsky

Analysis of wind flow upon high-rise buildings is very common topic. Nowadays, there are no general or analytical ways how to analyze wind effects on irregular shaped high-rise buildings complexes. Scaled experiments tested in wind tunnels are best for precise solutions, however they are time consuming and expensive too. Therefore we use computational modeling software based on finite volume method to analyze these effects and then, thanks to these analysis we can design structures and optimize them. Paper deals with simplified 3D analysis of wind effects on high-rise buildings complex "Panorama City" located in Bratislava-Slovakia. Through this analysis we obtain results for wind speed near objects and external pressure coefficient as well. Both of them will be helpful to gain insight for future constructions or verification of already constructed ones.


Author(s):  
Nan Yan ◽  
Tyamo Okosun ◽  
Sanjit K. Basak ◽  
Dong Fu ◽  
John Moreland ◽  
...  

Virtual Reality (VR) is a rising technology that creates a computer-generated immersive environment to provide users a realistic experience, through which people who are not analysis experts become able to see numerical simulation results in a context that they can easily understand. VR supports a safe and productive working environment in which users can perceive worlds, which otherwise could be too complex, too dangerous, or impossible or impractical to explore directly, or even not yet in existence. In recent years, VR has been employed to an increasing number of scientific research areas across different disciplines, such as numerical simulation of Computational Fluid Dynamics (CFD) discussed in present study. Wind flow around wind turbines is a complex problem to simulate and understand. Predicting the interaction between wind and turbine blades is complicated by issues such as rotating motion, mechanical resistance from the breaking system, as well as inter-blade and inter-turbine wake effects. The present research uses CFD numerical simulation to predict the motion and wind flow around two types of turbines: 1) a small scale Vertical Axis Wind Turbine (VAWT) and 2) a small scale Horizontal Axis Wind Turbine (HAWT). Results from these simulations have been used to generate virtual reality (VR) visualizations and brought into an immersive environment to attempt to better understand the phenomena involved.


2019 ◽  
Vol 10 (1) ◽  
pp. 212 ◽  
Author(s):  
Sudarsono Sudarsono ◽  
Anak Agung Susastriawan ◽  
Sugianto Sugianto

Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 60 ◽  
Author(s):  
Cesar Guzmán ◽  
José Carrera ◽  
Héctor Durán ◽  
Javier Berumen ◽  
Arturo Ortiz ◽  
...  

Virtual sensing is crucial in order to provide feasible and economical alternatives when physical measuring instruments are not available. Developing model-based virtual sensors to calculate real-time information at each targeted location is a complex endeavor in terms of sensing technology. This paper proposes a new approach for model-based virtual sensor development using computational fluid dynamics (CFD) and control. Its main objective is to develop a three-dimensional (3D) real-time simulator using virtual sensors to monitor the temperature in a greenhouse. To conduct this study, a small-scale greenhouse was designed, modeled, and fabricated. The controller was based on the convection heat transfer equation under specific assumptions and conditions. To determine the temperature distribution in the greenhouse, a CFD analysis was conducted. Only one well-calibrated and controlled physical sensor (temperature reference) was enough for the CFD analysis. After processing the result that was obtained from the real sensor output, each virtual sensor had learned the associative transfer function that estimated the output from given input data, resulting in a 3D real-time simulator. This study has demonstrated, for the first time, that CFD analysis and a control strategy can be combined to obtain system models for monitoring the temperature in greenhouses. These findings suggest that, generally, virtual sensing can be applied in large greenhouses for monitoring the temperature using a 3D real-time simulator.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3877 ◽  
Author(s):  
Hyun-Goo Kim ◽  
Wan-Ho Jeon

For the purposes of this study, a wind tunnel experiment and a numerical analysis during ebb and high tides were conducted to determine the positive and negative effects of wind flow influenced by a seawall structure on the performance of wind turbines installed along a coastal seawall. The comparison of the wind flow field between a wind tunnel experiment performed with a 1/100 scale model and a computational fluid dynamics (CFD) analysis confirmed that the MP k-turbulence model estimated flow separation on the leeside of the seawall the most accurately. The CFD analysis verified that wind speed-up occurred due to the virtual hill effect caused by the seawall’s windward slope and the recirculation zone of its rear face, which created a positive effect by mitigating wind shear while increasing the mean wind speed in the wind turbine’s rotor plane. In contrast, the turbulence effect of flow separation on the seawall’s leeside was limited to the area below the wind turbine rotor, and had no negative effect. The use of the CFD verified with the comparison with the wind tunnel experiment was extended to the full-scale seawall, and the results of the analysis based on the wind turbine Supervisory Control and Data Acquisition (SCADA) data of a wind farm confirmed that the seawall effect was equivalent to a 1.5% increase in power generation as a result of a mitigation of the wind profile.


2019 ◽  
Vol 158 ◽  
pp. 2272-2277 ◽  
Author(s):  
Simon Emhardt ◽  
Panpan Song ◽  
Guohong Tian ◽  
John Chew ◽  
Mingshan Wei

Sign in / Sign up

Export Citation Format

Share Document