Gate Driver for 10 kV SiC MOSFET Power Module with High-Speed Current Sensing

Author(s):  
Mark Cairnie ◽  
Christina DiMarino
2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


2019 ◽  
Vol 34 (5) ◽  
pp. 4613-4627 ◽  
Author(s):  
Jingxuan Chen ◽  
Wei Jia Zhang ◽  
Andrew Shorten ◽  
Jingshu Yu ◽  
Masahiro Sasaki ◽  
...  

2018 ◽  
Vol 924 ◽  
pp. 845-848 ◽  
Author(s):  
Madhu Sudhan Chinthavali ◽  
Zhi Qiang Wang

This paper presents the design and development of a 30-kW 3D printed based air-cooled silicon carbide (SiC) inverter for electric vehicle application. Specifically, an all-SiC air-cooled power module is designed, aiming at reduced thermal resistance for high temperature and high power density operation. The module assembly incorporates three major parts: an optimized 3D printed heat sink, a SiC MOSFET phase leg module, and a two-channel gate driver. The electrical and thermal performance of the power module is evaluated through double pulse test and continuous operation. Based on the air-cooled power module, a three-phase half-bridge voltage source inverter with 3D-printed air duct is built and tested to further verify the performance of the power module.


2019 ◽  
Vol 34 (11) ◽  
pp. 11191-11198 ◽  
Author(s):  
Matthew Barlow ◽  
Shamim Ahmed ◽  
A. Matt Francis ◽  
H. Alan Mantooth
Keyword(s):  

2014 ◽  
Vol 533 ◽  
pp. 294-297
Author(s):  
Kai Yang ◽  
Zhong Shen Li ◽  
Lei Zhang

In order to meet the high speed, high precision, high reliability of the packaging machine, a novel control system is provided. In the hardware, the main circuits consisted of main processor module, memory module, temperature measurement and control module, input signal detection module, material split packing module, output driver module, human-machine interface module, system monitor module, power module and JTAG debug module, etc. In the software, the multi-tasking operating system μC/OS-Ⅱ and the graphical user interface μC/GUI were successfully transplanted into LPC2478. Then an experimental platform was established. And many control tasks, including automatic measurement, making bags, loading, transferring, pumping vacuum, sealing and data display, were automatically and continuously executed on the platform. Finally the results show: the machine can package 30 packets (5 g per packet) in a minute; the packaging errors ≤ 0.2 g; the packaging qualified rates ≥ 93%. In conclusion, the system performance is good.


Author(s):  
Juan Colmenares ◽  
Dimosthenis Peftitsis ◽  
Jacek Rabkowski ◽  
Hans-Peter Nee

Sign in / Sign up

Export Citation Format

Share Document