A systematic design procedure for high-speed opamp performance optimization

Author(s):  
M. Perenzoni ◽  
M. Malfatti ◽  
F. De Nisi ◽  
D. Stoppa ◽  
A. Baschirotto
2002 ◽  
Vol 124 (4) ◽  
pp. 539-548 ◽  
Author(s):  
Erwin Schrijver ◽  
Johannes van Dijk

Mechanical (direct-drive) systems designed for high-speed and high-accuracy applications require control systems that eliminate the influence of disturbances like cogging forces and friction. One way to achieve additional disturbance rejection is to extend the usual (P(I)D) controller with a disturbance observer. There are two distinct ways to design, represent, and implement a disturbance observer, but in this paper it is shown that the one is a generalization of the other. A general systematic design procedure for disturbance observers that incorporates stability requirements is given. Furthermore, it is shown that a disturbance observer can be transformed into a classical feedback structure, enabling numerous well-known tools to be used for the design and analysis of disturbance observers. Using this feedback interpretation of disturbance observers, it will be shown that a disturbance observer based robot tracking controller can be constructed that is equivalent to a passivity based controller. By this equivalence not only stability proofs of the disturbance observer based controller are obtained, but it also provides more transparent controller parameter selection rules for the passivity based controller.


Author(s):  
Marlon Hahn ◽  
A. Erman Tekkaya

AbstractElectrically vaporizing foil actuators are employed as an innovative high speed sheet metal forming technology, which has the potential to lower tool costs. To reduce experimental try-outs, a predictive physics-based process design procedure is developed for the first time. It consists of a mathematical optimization utilizing numerical forming simulations followed by analytical computations for the forming-impulse generation through the rapid Joule heating of the foils. The proposed method is demonstrated for an exemplary steel sheet part. The resulting process design provides a part-specific impulse distribution, corresponding parallel actuator geometries, and the pulse generator’s charging energy, so that all process parameters are available before the first experiment. The experimental validation is then performed for the example part. Formed parts indicate that the introduced method yields a good starting point for actual testing, as it only requires adjustments in the form of a minor charging energy augmentation. This was expectable due to the conservative nature of the underlying modeling. The part geometry obtained with the most suitable charging energy is finally compared to the target geometry.


2003 ◽  
Vol 125 (3) ◽  
pp. 593-601 ◽  
Author(s):  
B. Demeulenaere ◽  
J. De Schutter

Traditionally, cam-follower systems are designed by assuming a constant camshaft speed. Nevertheless, all cam-follower systems, especially high-speed systems, exhibit some camshaft speed fluctuation (despite the presence of a flywheel) which causes the follower motions to be inaccurate. This paper therefore proposes a novel design procedure that explicitly takes into account the camshaft speed variation. The design procedure assumes that (i) the cam-follower system is conservative and (ii) all forces are inertial. The design procedure is based on a single design choice, i.e., the amount of camshaft speed variation, and yields (i) cams that compensate for the inertial dynamics for any period of motion and (ii) a camshaft flywheel whose (small) inertia is independent of the period of motion. A design example shows that the cams designed in this way offer the following advantages, even for non-conservative, non-purely inertial cam-follower systems: (i) more accurate camshaft motion despite a smaller flywheel, (ii) lower motor torques, (iii) more accurate follower motions, with fewer undesired harmonics, and (iv) a camshaft motion spectrum that is easily and robustly predictable.


2021 ◽  
Vol 16 (5) ◽  
pp. 773-780
Author(s):  
Bing-Jie Li ◽  
Zhen-Song Li ◽  
Yan-Ping Zhao ◽  
Zheng-Wang Li ◽  
Min Miao

The signal integrity (SI) analysis of a high-speed signal interconnect channel composed of through silicon vias (TSVs) and horizontal re-distribution layers (RDL) is carried out, and the problems of SI, such as transmission loss, crosstalk and coupling effect in the transmission channel, are analyzed and studied. These signal integrity issues are considered in this paper, a signal interconnect channel model is proposed and the equivalent circuit model is deduced as well. Compared with the traditional one, this interconnect channel model has better performance in SI. Further sweep frequency analysis is carried out for different material parameters to achieve signal transmission performance optimization aimed at this model. Test samples of the proposed signal interconnect channel model are designed and fabricated according to the process index, and measured to verify the actual transmission performance. The design and optimization rule of high-speed signal interconnect channel are summarized which proved that the proposed structure has more advantages in signal transmission performance, and has important guiding significance for practical design.


2012 ◽  
Vol 155-156 ◽  
pp. 12-17 ◽  
Author(s):  
Lian Xu Wang ◽  
Da Wei Qu ◽  
Chang Qing Song ◽  
Ye Tian

To research the performance optimization of high speed car diesel engine,firstly according to the characteristic of car diesel engine with Variable Nozzle Turbocharger (VNT), one-dimensional cycle model of the engine was established by using simulation software BOOST and validated by experimental data in this paper. The turbine blades’ opening corresponding to different speed was determined. Therefore the problem that the VNT surges at low engine speed and the inlet air flow is insufficient at high speed was solved. Based on the above model, this paper improved the efficiency of the engine by optimizing the compression ratio and the distribution phase of camshaft and then used the experimental data to check the simulation results. Meanwhile the fuel consumption and the possibility of the engine operation roughness decreased.


Author(s):  
H Hirani ◽  
K Athre ◽  
S Biswas

The trend towards high power output, high speed and low power loss in engines requires a better understanding of bearing behaviour. Research in this area is directed more towards different aspects involved in bearing analyses, rather than providing a comprehensive guideline on design of bearing. This effort compiles the design methodology for selection of diametral clearance and bearing length by limiting the minimum film thickness, maximum pressure and temperature. The design procedure is summarized on the basis of the existing rapid bearing analyses for evaluation of the journal trajectory, minimum film thickness and maximum pressure and simplified thermal analysis. A flow chart is provided for step-by-step bearing design. Finally, two case studies of engine bearings are described: one investigates the VEB bigend connecting-rod bearing for a large industrial reciprocating engine and the other a main crankshaft bearing for an automotive engine. The methodology translates into easy-to-use expressions and the overall procedure is outlined, using practical data to demonstrate how this can be employed effectively by users.


2000 ◽  
Vol 123 (3) ◽  
pp. 464-472 ◽  
Author(s):  
Z. S. Spakovszky ◽  
J. D. Paduano ◽  
R. Larsonneur ◽  
A. Traxler ◽  
M. M. Bright

Magnetic bearings are widely used as active suspension devices in rotating machinery, mainly for active vibration control purposes. The concept of active tip-clearance control suggests a new application of magnetic bearings as servo-actuators to stabilize rotating stall in axial compressors. This paper presents a first-of-a-kind feasibility study of an active stall control experiment with a magnetic bearing servo-actuator in the NASA Glenn high-speed single-stage compressor test facility. Together with CFD and experimental data a two-dimensional, incompressible compressor stability model was used in a stochastic estimation and control analysis to determine the required magnetic bearing performance for compressor stall control. The resulting requirements introduced new challenges to the magnetic bearing actuator design. A magnetic bearing servo-actuator was designed that fulfilled the performance specifications. Control laws were then developed to stabilize the compressor shaft. In a second control loop, a constant gain controller was implemented to stabilize rotating stall. A detailed closed loop simulation at 100 percent corrected design speed resulted in a 2.3 percent reduction of stalling mass flow, which is comparable to results obtained in the same compressor by Weigl et al. (1998. ASME J. Turbomach. 120, 625–636) using unsteady air injection. The design and simulation results presented here establish the viability of magnetic bearings for stall control in aero-engine high-speed compressors. Furthermore, the paper outlines a general design procedure to develop magnetic bearing servo-actuators for high-speed turbomachinery.


Author(s):  
S. G. Berenyi

This technology project, sponsored by the U.S. Department of Energy, is intended to advance the technological readiness of the ceramic automotive gas turbine engine. Of the several technologies requiring development before such an engine becomes a commercial reality, structural ceramic components represent the greatest technical challenge, and are the prime project focus. The ATTAP aims at developing and demonstrating such ceramic components that have a potential for: (1) competitive automotive engine life cycle cost and (2) operating for 3500 hr in a turbine engine environment at turbine inlet temperatures up to 1371°C (2500°F). Allison is addressing the ATTAP goal using internal technical resources, an extensive technology and data base from General Motors (GM), technical resources from several subcontracted domestic ceramic suppliers, and supporting technology developments from Oak Ridge and other federal programs. The development activities have resulted in the fabrication and delivery of numerous ceramic engine components, which have been characterized through laboratory evaluation, cold spin testing, hot rig testing, and finally through engine testing as appropriate. These component deliveries are the result of the ATTAP design/process development/fabrication/characterization/test cycles. Ceramic components and materials have been characterized in an on-going program using nondestructive and destructive techniques. So far in ATTAP, significant advancements include: • evolution of a correlated design procedure for monolithic ceramic components • evolution of materials and processes to meet the demanding design and operational requirements of high temperature turbines • demonstration of ceramic component viability through thousands of hours of both steady-slate and transient testing while operating at up to full design speed, and at turbine inlet temperatures up to 1371°C (2500°F) • completion of hundreds of hours of durability cyclic testing utilizing several “all ceramic” gasifier turbine assemblies • demonstration of ceramic rotor survivability under conditions of extreme foreign object ingestion, high speed turbine tip rub, severe start-up transients, and a very demanding durability cycle In addition to the ceramic component technology, progress has been made in the areas of low emission combustion technology and regenerator design and development.


2010 ◽  
Vol 297-301 ◽  
pp. 396-401
Author(s):  
Mehrdad Vahdati ◽  
E. Azimi ◽  
Ali Shokuhfar

Air Spindles have been used in ultra precision machines for several years due to their advantages such as high speed rotation, low friction, and low vibration, [1]. Air spindles are widely used in these machines for producing precise work pieces. Although, spindles function on a very complicated theoretical basis, [2, 3], their structure is very simple and consists of mainly a rotor and a stator. The rotor/stator could be made of different shapes. A cylindrical shape is the one commonly in use. The spindle designed in this work has a spherical configuration. It has been designed so that it could be moved without application of electric motor and only by a wind turbine system, [4]. The spindle studied in this research uses compressed air for rotor suspension, and has an air turbine for rotating its shaft. A thin air film acts as bearing layer between rotor and stator. In design procedure, operation parameters such as air inlet pressure for turbine, air inlet pressure for bearing, diameter of turbine nuzzles, diameter of bearing nuzzles, clearance between rotor and stator and etc. have been considered, [5]. A prototype spindle has been manufactured using design criteria. The influence of above mentioned parameters have been recognized through experiments.


Sign in / Sign up

Export Citation Format

Share Document