Advanced Packaging Cost Reduction by Selective Copper Metallization

Author(s):  
Rashid Mavliev ◽  
Knut Gottfried ◽  
Robert Rhoades
2019 ◽  
Vol 2 (6) ◽  
pp. 269-280 ◽  
Author(s):  
Bioh Kim ◽  
Charles Sharbono ◽  
Tom Ritzdorf ◽  
Dan Schmauch

Author(s):  
Elvino Da Silveira ◽  
Keith Best ◽  
Gurvinder Singh ◽  
Roger McCleary

For more than 50 years the semiconductor industry has pursued Moore's law, continuously improving device performance, reducing cost, and scaling transistor geometries down to where advanced CMOS has reached beyond the 10nm technology node. The commensurate increase in I/O count has created many challenges for device packaging which hitherto was considered low cost with simple solutions. It was once thought that old backend foundry lithography steppers could be used to address the new packaging requirements; which was true whilst the substrates remained in the traditional 300mm Silicon format. The recent unprecedented rapid growth in Fan Out Wafer Level Packaging (FOWLP) applications has introduced a more complicated landscape of process challenges, with no restriction on substrate format, where cost is the main driver and high yields are mandatory. This paper discusses the lithography process challenges that have ensued from disruptive FOWLP, and more recently the paradigm shift to Panel fan out Packaging. The work reports on lithography solutions for CD control over topography and high aspect ratio imaging of 2μm line/space RDL. In addition, the introduction of new inspection capabilities for defects and metrology is reported for both wafers and panels. The increase in lithography productivity and cost reduction provided by FOPLP is also discussed with production examples.


Author(s):  
J. Liu ◽  
N. D. Theodore ◽  
D. Adams ◽  
S. Russell ◽  
T. L. Alford ◽  
...  

Copper-based metallization has recently attracted extensive research because of its potential application in ultra-large-scale integration (ULSI) of semiconductor devices. The feasibility of copper metallization is, however, limited due to its thermal stability issues. In order to utilize copper in metallization systems diffusion barriers such as titanium nitride and other refractory materials, have been employed to enhance the thermal stability of copper. Titanium nitride layers can be formed by annealing Cu(Ti) alloy film evaporated on thermally grown SiO2 substrates in an ammonia ambient. We report here the microstructural evolution of Cu(Ti)/SiO2 layers during annealing in NH3 flowing ambient.The Cu(Ti) films used in this experiment were prepared by electron beam evaporation onto thermally grown SiO2 substrates. The nominal composition of the Cu(Ti) alloy was Cu73Ti27. Thermal treatments were conducted in NH3 flowing ambient for 30 minutes at temperatures ranging from 450°C to 650°C. Cross-section TEM specimens were prepared by the standard procedure.


2019 ◽  
Vol 10 (1) ◽  
pp. 1-27
Author(s):  
Aniek Wijayanti

Business Process Analysis can be used to eliminate or reduce a waste cost caused by non value added activities that exist in a process. This research aims at evaluating activities carried out in the natural material procurement process in the PT XYZ, calculating the effectiveness of the process cycle, finding a way to improve the process management, and calculating the cost reduction that can achieved by activity management. A case study was the approach of this research. The researcher obtained research data throughout deep interviews with the staff who directly involved in the process, observation, and documentation of natural material procurement. The result of this study show that the effectiveness of the process cycle of natural material procurement in the factory reached as much as 87,1% for the sand material and 72% for the crushed stone. This indicates that the process still carry activities with no added value and still contain ineffective costs. Through the Business Process Mechanism, these non value added activities can be managed so that the process cycle becomes more efficient and cost effectiveness is achieved. The result of the effective cycle calculation after the management activities implementation is 100%. This means that the cost of natural material procurement process has become effective. The result of calculation of the estimated cost reduction as a result of management activity is as much as Rp249.026.635,90 per year.


Sign in / Sign up

Export Citation Format

Share Document