Analysis of the Method for the Flat-Band Voltage Determination on the Capacitance-Voltage Characteristic Inflection Point

Author(s):  
Vladimir G. Polovinkin ◽  
Nikita I. Lysenko
1988 ◽  
Vol 128 ◽  
Author(s):  
Tatsumi Mizutani ◽  
Shigeru Nishimatsu ◽  
Takashi Yunogami

ABSTRACTTo clarify the generation mechanism of radiation damage induced in SiO2/Si by plasma processes, effects of three different beams, i.e., ions, neutrals and vacuum ultraviolet (VUV) photons have been evaluated independently. The radiation damage caused by these energetic bombardments has been measured by capacitance-voltage (C-V) measurements. These reveal that bombardments with a 250 eV Neo neutral beam generate + far less flat-band voltage shifts ( ΔVFB) than those with a Ne+ ion beam of equal kinetic energy. This c n be interpreted in terms of the differences in charge build-up and in hole production upon the incidence of these particles. VUV photons produced in the plasma are also responsible for large ΔVFB.


2018 ◽  
Vol 924 ◽  
pp. 449-452 ◽  
Author(s):  
Yi Fan Jia ◽  
Hong Liang Lv ◽  
Xiao Yan Tang ◽  
Qing Wen Song ◽  
Yi Men Zhang ◽  
...  

The characteristics of near interface electron and hole traps in n-type 4H-SiC MOS capacitors with and without nitric oxide (NO) passivation have been systematically investigated. The hysteresis of the bidirectional capacitance-voltage (C-V) and the shift of flat band voltage (Vfb) caused by bias stress (BS) with and without ultraviolet light (UVL) irradiation are used for studying the influence of near interface electron traps (NIETs) and near interface hole traps (NIHTs). Compared with Ar annealed process, NO passivation can effectively reduce the density of NIETs, but induce excess NIHTs in the SiC MOS devices. What’s worse is that part of the trapped hole cannot be released easily from the NIHTs in the NO annealed sample, which may act as the positive fixed charge and induce the negative shift of threshold voltage.


Author(s):  
M.M. Ismael

Fourier Transform Infrared (FTIR) Spectroscopy and Capacitance-Voltage measurements are used to characterize the chemical bonding configuration and crystallographic orientations for SiOxNy thin films grown by glass assisted CO2 laser. FTIR spectra detected the Si-O and Si-N strongest absorption bands are close to each other at wave number in the range (700-1000 cm-1) depending on silicon substrates, and Si-O stretching bond at wave number around (~1088.285 cm-1) with a FWHM of 73.863 cm-1 for the two samples, the presences of hydrogen impurities like Si-H and N-H in the films were also identified and calculated. From C-V measurement film thickness were calculated and found to be 19.2 and 17.2 nm for SiOxNy/Si(111) and SiOxNy/Si(100) respectively. From the flat band voltage of -5.4 and -1.3 measured the two samples, their interface trap densities were found to be 1.4 × 1013 and 1.57 × 1013 ev-1·cm-2 respectively.


Sign in / Sign up

Export Citation Format

Share Document