Effect of Annealing Rate on Low-Temperature Impact Strength and Space Charge Characteristics of Isotactic Polypropylene

Author(s):  
Ling Zhang ◽  
Wangsong Wu ◽  
Yuxuan Xu ◽  
Yuanxiang Zhou
2012 ◽  
Vol 468-471 ◽  
pp. 1053-1057
Author(s):  
Yun Feng Yang ◽  
Guo Sheng Hu ◽  
Xing Lin Ren

By the in situ compatibilization, PP/POE blends were prepared with dicumyl peroxide (DCP) as initiator, Trimethylolpropane triacrylate (TMPTA) as co-during systems and the metallocene polyolef in elastomers ploy (ethylene-1-octene) (POE) as toughening rubber. The effects of additive amount for TMPTA、POE on the mechanical properties were studied. The results showed that the maximum value of the room-temperature and low-temperature impact strength for the composite was reached to 52.03KJ/m2 and 37.29KJ/m2, and the elongationfor was reached to 482.74%.


Polymer ◽  
1983 ◽  
Vol 24 (3) ◽  
pp. 365-370 ◽  
Author(s):  
F. Ramsteiner ◽  
G. Kanig ◽  
W. Heckmann ◽  
W. Gruber

2021 ◽  
Vol 99 (3) ◽  
pp. 32-39
Author(s):  
V.Ya. Grabovsky ◽  
◽  
V.I. Kanyuka ◽  
O.V. Lysytsia ◽  
◽  
...  

Using the method of mathematical planning of the experiment, the influence of two-stage (low-temperature + high-temperature) aging on the hardness and high-temperature (750 °C) impact strength of a stamped alloy ХН35ВТЮ (EK39) for hot pressing of metals was investigated. The need to increase the high-temperature impact strength of the alloy is a significant decrease (failure) with increasing test temperature from room temperature to 700… 750 °C. To isolate the particles of the reinforcing γ′-phase of the Ni3(Al,Ti) type during aging, the alloy was previously hardened in oil from a temperature of 1150 °C. Determination of the most effective modes of two-stage aging was performed using a small replica of the orthogonal plan of the second order type 24-1. The first (low-temperature) stage corresponds to the beginning of spinodal decay of supersaturated solid solution at the stage of formation of Guinness-Preston zones, and the second (high-temperature) - to the formation of particles of stable γ′-phase type Ni3(Ti,Al). Temperature and aging time on each step varied. According to the planning matrix, regression equations were calculated, and additional experiments were performed to determine the modes of step aging, which provide the alloy with a higher level of selected properties compared to the recommended single aging (780 °C, 10 hours). According to the obtained regression equations, the change in the aging temperature at the second stage of aging does not affect the hardness of the alloy within its variation (750 °C–800 °C). The effect on impact strength of changes in temperature (650 °C–700 °C) and holding time (2–6 hours) at the first stage of aging is also insignificant. According to the results of processing and analysis of experimental data, it is established that the increase of high-temperature impact strength from 38 to 120 J/cm2 (while maintaining hardness and high-temperature strength at the same level) is achieved after step aging 700 °C, 20 hours + 750 °C, 2 hours. The increase in hardness from 29 to 33 HRC with a simultaneous increase in impact strength to 55 J/cm2 provides step aging of 725 °C, 10 hours + 775 °C, 6 hours. According to the results of electron microscopic study of the microstructure, it was found that the achieved level of impact strength after step aging is provided by increasing the dispersion of spherical particles of the γ′-phase of the type Ni3(Al,Ti). The increase in hardness is due to a more uniform volume distribution and a smaller cross-sectional scatter of γ′-phase particles. Keywords: aging, dispersion hardening, impact strength, microstructure, stamping tool.


2021 ◽  
Vol 9 (6) ◽  
pp. 604
Author(s):  
Du-Song Kim ◽  
Hee-Keun Lee ◽  
Woo-Jae Seong ◽  
Kwang-Hyeon Lee ◽  
Hee-Seon Bang

The International Maritime Organization has recently updated the ship emission standards to reduce atmospheric contamination. One technique for reducing emissions involves using liquefied natural gas (LNG). The tanks used for the transport and storage of LNG must have very low thermal expansion and high cryogenic toughness. For excellent cryogenic properties, high-Mn steel with a complete austenitic structure is used to design these tanks. We aim to determine the optimum welding conditions for performing Laser-MIG (Metal Inert Gas) hybrid welding through the MIG leading and laser following processes. A welding speed of 100 cm/min was used for welding a 15 mm thick high-Mn steel plate. The welding performance was evaluated through mechanical property tests (tensile and yield strength, low-temperature impact, hardness) of the welded joints after performing the experiment. As a result, it was confirmed that the tensile strength was slightly less than 818.4 MPa, and the yield strength was 30% higher than base material. The low-temperature impact values were equal to or greater than 58 J at all locations in the weld zone. The hardness test confirmed that the hardness did not exceed 292 HV. The results of this study indicate that it is possible to use laser-MIG hybrid welding on thick high-Mn steel plates.


RSC Advances ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 6791-6797
Author(s):  
Yueqing Ren ◽  
Xiaojie Sun ◽  
Lanlan Chen ◽  
Yafei Li ◽  
Miaomiao Sun ◽  
...  

Crosslinking significantly improves the toughness and impact strength of HDPE and extends its application, especially at low temperature.


Sign in / Sign up

Export Citation Format

Share Document