Dyeing processes of 100% bio-based and degradable polylactide/poly (hydroxybutyrate-co-hydroxyvalerate) textiles

2016 ◽  
Vol 87 (17) ◽  
pp. 2066-2075 ◽  
Author(s):  
ZH Zhang ◽  
ZQ Xu ◽  
XX Huang ◽  
XM Tao

This paper reports an investigation of dyeing processes of textiles made from a novel 100% bio-based and fully degradable polylactide/poly (hydroxybutyrate-co-hydroxyvalerate) (PLA/PHBV) fiber. The dye exhaustion, depth of shade and fastness, as well as bursting strength of dyed PLA/PHBV fabrics have been evaluated in terms of types and concentration of dyestuff, dyeing bath temperature, duration, liquor ratio and pH value. Finally, the energy cost of the whole dyeing process of the proposed material is calculated and compared with that of polyethylene terephthalate. The experimental results show that an excellent dyeing effect and bursting strength can be achieved by properly applied dyes (e.g. C.I. Disperse Orange 30, Red 74, and Blue 79) under optimal low-dyeing-temperature conditions (100℃, 10 min, pH 5, LR 30:1). In addition, considering the low energy cost during the whole process, PLA/PHBV fibers can be regarded as a promising and environment-friendly material for the textile industry.

2009 ◽  
Vol 610-613 ◽  
pp. 905-910 ◽  
Author(s):  
Ji Xing Lin ◽  
Li Yuan Niu ◽  
Guang Liang Gao

An anticorrosion conversion coating on metal magnesium surface was prepared using immersion method in an aqueous solution containing mainly phytic acid. The coating after the preparation could be dry in the air without a rinse process using water in the final stage. Hence there is no discharge of waste water and waste gas in the whole process. Influence of several factors on the anticorrosion performance of coating was tested. And optimal parameters in the coating formation process were obtained from orthogonal test. The results indicated that the coating had better corrosion resistance, when the solution contained 3% phytic acid, and the immersion time is 7 minutes and the PH value was 3.5. The surface conversion coating was characterized by SEM and EDS. The conversion coating is better than the traditional chromate passive film by testing corrosion speed of coatings using hydrogen evolution method. The technology of the environment-friendly conversion coating containing phytic acid has the potential to be a new anti-corrosion technology for magnesium surface.


RSC Advances ◽  
2015 ◽  
Vol 5 (115) ◽  
pp. 94895-94902 ◽  
Author(s):  
Cheng Ma ◽  
Yuehong Shu ◽  
Hongyu Chen

A sustainable method, with minimal pollution and low energy cost in comparison with the conventional smelting method, is proposed for treating components of spent lead acid batteries with oxalate and sodium oxalate.


Author(s):  
Mariusz Jasiński ◽  
Jerzy Mizeraczyk ◽  
Zenon Zakrzewski

AbstractResults of the study of decomposition of volatile organic compounds (VOCs including Freons) in their mixtures with either synthetic air or nitrogen, and nitrogen oxides NOx in their mixtures with N2 or Ar in low (~ 100 W) and moderate-power (200-400 W) microwave torch plasmas at atmospheric pressure are presented. Three types of microwave torch discharge (MTD) generators, i.e. the low-power coaxial-line-based MID, the moderate-power waveguide-based coaxial-line MTD and the moderate-power waveguide-based MTD generators were used. The gas flow rate and microwave power (2.45 GHz) delivered to the discharge were in the range of 1÷3 l/min and 100÷ 400 W, respectively. Concentrations of the processed gaseous pollutants usually were from several up to several tens percent. The energy efficiency of decomposition of several gaseous pollutants reached 1000 g/kWh. It was found that the microwave torch plasmas fully decomposed the pollutants at relatively low energy cost. This suggests that the MTD plasma can be a useful tool for decomposition of highly-concentrated gaseous pollutants.


Author(s):  
R. F. Sabirov ◽  
A. F. Makhotkin ◽  
Yu. N. Sakharov ◽  
I. A. Makhotkin ◽  
I. Yu. Sakharov

Experimental studies of the kinetics and mechanism of the process, decomposition of apatite by phosphoric acid, in the Apatite-H3PO4-H2O system without the addition of sulfuric acid have been performed. The study of the decomposition process of Kovdorsky apatite with certain particle sizes was carried out in a batch reactor with a volume of 1 dm3 with stirring of the reaction mixture, and an initial concentration of phosphoric acid of 17% by weight, at a temperature of 78–82 °C. Observation of the process was carried out by determining the concentration of phosphoric acid and the concentration of monocalcium phosphate. The acidity of the reaction mixture was determined by the pH meter readings (pH-105 MA with a glass combined-ESC-10603 electrode). It was shown that during the whole process a constant smooth increase in the pH value of the reaction mixture to pH 6 occurs. Comparison of the pH values of the reaction mixture during the actual at the time of determining the concentration of phosphoric acid and pH of phosphoric acid of the corresponding concentration in the aqueous solution shows that the pH value of the reaction mixture is significantly affected by the presence of monocalcium phosphate gel. During the process, during the first thirty minutes, the concentration of phosphoric acid decreases from 17 to 10% by weight, the corresponding quantitative formation of monocalcium phosphate gel and a proportional increase in the pH of the reaction mixture. Then, as the concentration of phosphoric acid decreases, the process slows down and does not proceed to the end under the experimental conditions. The dependence of the concentration of hydrogen ions in the reaction mixture on the time of the process of decomposition of apatite in phosphoric acid, which is presented in logarithmic coordinates, shows that the mechanism of formation of hydrogen ions during the whole process does not change. Thus, it is shown that the process of decomposition of apatite by phosphoric acid in the Apatite-H3PO4-H2O system proceeds with the formation of an intermediate product - monocalcium phosphate gel. When this occurs, a corresponding significant change in the pH values of the reaction mixture occurs. During the whole process there is a constant decrease in the concentration of phosphoric acid.


Author(s):  
JEYAKODI MOSES ◽  
Sathish P. ◽  
Keerthivasan M. ◽  
Pragadeesh R.J. ◽  
Pranesh A.

Polyethylene terephthalate is one of the important synthetic ester polymeric material used in widespread areas.  In textile industry, this fibrous material finds use in most of the garment and apparel applications due to its ease of handling, maintenance, and drying and competes with cotton materials.  However, due to the maximum hydrophobic behavior, this textile material gives number of issues like accumulation of statics, negligible moisture content, poor comfort and aesthetic characters.  Hence, in order to use this polyester material in the general textile industries particularly for garment and apparel productions, it is necessary to increase to some extent of its hydrophilic character by the application of some suitable chemicals like polyvinyl alcohol.  In these context, in this work an attempt is made to treat the polyethylene terephthalate fabric with sodium hydroxide followed by polyvinyl alcohol so as to increase the aesthetic properties.  The output received after the polyvinyl alcohol treatment on this fabric gives the good results expected for the garment applications.  


2021 ◽  
Vol 7 (2) ◽  
pp. 188-195
Author(s):  
Nurhasni Nurhasni ◽  
Sariana Harahap ◽  
Ahmad Fathoni ◽  
Hendrawati Hendrawati

The ability of bagasse adsorbents to adsorb methylene blue without activation using 0.5 M H2SO4 solution was examined. Methylene blue is widely used in the textile industry because it produces bright colors, and the dyeing process is fast and easy. This research aims to determine the optimum adsorption conditions, namely the variations in contact time, dye concentration, adsorbent mass, and pH effect on methylene blue, which were carried out using the batch method. Furthermore, the adsorbents were characterized by FT-IR and SEM. The optimum state of the bagasse adsorbent to adsorb methylene blue dye has a mass of 0.5 grams, a contact time of 30 minutes, a concentration of 50 ppm, and a pH of 5. The character of the adsorbent after activation with H2SO4 was better than without activation. The highest adsorption efficiency of methylene blue dye in the batch method was 99.67%. The FTIR spectrum of the bagasse adsorbent showed OH, C-H, C=O, C=C, and C-O functional groups. The adsorption isotherm model for methylene blue dye follows the Langmuir isotherm since the graph obtained is linear with the correlation coefficient (R2) = 1, where the adsorbent has a homogeneous surface.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4209 ◽  
Author(s):  
Sanghyun Yoon ◽  
Byunghun Choi ◽  
Md Morshedur Rahman ◽  
Santosh Kumar ◽  
Shekh Md Mamun Kabir ◽  
...  

Dyeing and fastness properties of a series of 4-fluorosulfonylphenylazo-5-pyrazolone dyes on polyester were investigated in this study. The 4-nitrophenylazo-5-pyrazolone dyes were also synthesized to compare their dyeing and fastness properties on polyester with those of fluorosulfonyl-substituted analogues. The substantivity of 4-arylazo-5-pyrazolone derivatives containing a p-fluorosulfonyl group in the diazo component was lower than that of their nitro analogues which have a higher extinction coefficient and higher affinity because of the polar nitro group. They showed relatively hypsochromic color and lower chroma on polyester compared with their nitro analogues because of the relatively weaker electron-accepting power of the fluorosulfonyl group compared to the nitro group. Disperse dyeing of polyester with 4-fluorosulfonylphenylazo-5-pyrazolone disperse dyes achieved high color fastness and reduces the adverse environmental impact of the dyeing process by providing the option of performing alkali clearing instead of reductive clearing, which has high biological oxygen demand when discharged into the dyeing effluent and generates carcinogenic aromatic amines.


Sign in / Sign up

Export Citation Format

Share Document