Comparative analysis of extreme solar irradiance between a fixed photovoltaic system and a solar tracker in the Peruvian highlands

Author(s):  
Elmer Rodrigo Aquino Larico
Data in Brief ◽  
2018 ◽  
Vol 21 ◽  
pp. 1618-1621 ◽  
Author(s):  
Carlos Robles Algarín ◽  
Omar Rodríguez Álvarez ◽  
Adalberto Ospino Castro

Author(s):  
Allison Gray ◽  
Robert Boehm ◽  
Kenneth W. Stone

Cooling of photovoltaic cells under high intensity solar irradiance is a major concern when designing concentrating photovoltaic systems. The cell temperature will increase if the waste heat is not removed and the cell voltage/power will decrease with increasing cell temperature. This paper presents an analysis of the passive cooling system on the Amonix high concentration photovoltaic system (HCPV). The concentrator geometry is described. A model of the HCPV passive cooling system was made using Gambit. Assumptions are discussed that were made to create the numerical model based on the actual system, the methods for drawing the model is discussed, and images of the model are shown. Fluent was used to compute the numerical results. In addition to the theoretical results that were computed, measurements were made on a system in the field. These data are compared to the theoretical data and differences are calculated. Theoretical conditions that were studied included uniform cell temperatures and worst case weather scenarios, i.e., no wind, high ambient conditions, and high solar irradiance. The performance of the Amonix high concentrating system could be improved if more waste heat were removed from the cell. Now that a theoretical model has been developed and verified, it will be used to investigate different designs and material for increasing the cooling of the system.


2021 ◽  
Vol 926 (1) ◽  
pp. 012005
Author(s):  
G S H Arimufti ◽  
W Sunanda ◽  
R F Gusa

Abstract The floating photovoltaic panel is increasingly being used. This is one of the ways to reduce temperature rise in photovoltaic panel. The floating photovoltaic panel is used for lighting at the fish pond. A unit of 8-watt lamp for lighting supplied by 1 unit of 50 Wp photovoltaic panel and 1 unit of 12 V/3.5 Ah battery. The heatsink attached to the bottom of the floating photovoltaic panel transfers heat from the panel to the fish pond water. Sensors are connected to Arduino to measure photovoltaic panel output voltage and current, solar irradiance, photovoltaic panel temperature and fish pond water temperature. From the measurement, the voltage generated from the floating photovoltaic panel is 12.71 – 14.71 V and the current is 0.15 - 1.17 A. While the solar irradiance value is 71 W/m2 to 396 W/m2, the surface temperature of photovoltaic panel is 26.9°C - 32.4°C and fish pond water temperature is 27.1°C - 30.2°C.


Author(s):  
Norazlan Hashim ◽  
Zainal Salam ◽  
Dalina Johari ◽  
Nik Fasdi Nik Ismail

<span>The main components of a Stand-Alone Photovoltaic (SAPV) system consists of PV array, DC-DC converter, load and the maximum power point tracking (MPPT) control algorithm. MPPT algorithm was used for extracting maximum available power from PV module under a particular environmental condition by controlling the duty ratio of DC-DC converter. Based on maximum power transfer theorem, by changing the duty cycle, the load resistance as seen by the source is varied and matched with the internal resistance of PV module at maximum power point (MPP) so as to transfer the maximum power. Under sudden changes in solar irradiance, the selection of MPPT algorithm’s sampling time (T<sub>S_MPPT</sub>) is very much depends on two main components of the converter circuit namely; inductor and capacitor. As the value of these components increases, the settling time of the transient response for PV voltage and current will also increase linearly. Consequently, T<sub>S_MPPT </sub>needs to be increased for accurate MPPT and therefore reduce the tracking speed. This work presents a design considerations of DC-DC Boost Converter used in SAPV system for fast and accurate MPPT algorithm. The conventional Hill Climbing (HC) algorithm has been applied to track the MPP when subjected to sudden changes in solar irradiance. By selecting the optimum value of the converter circuit components, a fast and accurate MPPT especially during sudden changes in irradiance has been realized.</span>


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Edith Osorio de la Rosa ◽  
Guillermo Becerra Nuñez ◽  
Alfredo Omar Palafox Roca ◽  
René Ledesma-Alonso

This paper presents a methodology to estimate solar irradiance using an empiric-stochastic approach, which is based on the computation of normalization parameters from the solar irradiance data. For this study, the solar irradiance data were collected in a weather station during a year. Posttreatment included a trimmed moving average to smooth the data, the performance of a fitting procedure using a simple model to recover normalization parameters, and the estimation of a probability density, which evolves along the daytime, by means of a kernel density estimation method. The normalization parameters correspond to characteristic physical variables that allow us to decouple the short- and long-term behaviors of solar irradiance and to describe their average trends with simple equations. The normalization parameters and the probability densities allowed us to build an empiric-stochastic methodology that generates an estimate of the solar irradiance. Finally, in order to validate our method, we had run simulations of solar irradiance and afterward computed the theoretical generation of solar power, which in turn had been compared with the experimental data retrieved from a commercial photovoltaic system. Since the simulation results show a good agreement with the experimental data, this simple methodology can generate the synthetic data of solar power production and may help to design and test a photovoltaic system before installation.


2019 ◽  
Vol 158 ◽  
pp. 302-308 ◽  
Author(s):  
Ming-Hui Tan ◽  
Tze-Koon Wang ◽  
Chee-Woon Wong ◽  
Boon-Han Lim ◽  
Tiong-Keat Yew ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 395 ◽  
Author(s):  
Sung-Min Kim ◽  
Myeongchan Oh ◽  
Hyeong-Dong Park

Photovoltaic (PV) energy is one of the most promising renewable energies in the world due to its ubiquity and sustainability. However, installation of solar panels on the ground can cause some problems, especially in countries where there is not enough space for installation. As an alternative, floating PV, with advantages in terms of efficiency and environment, has attracted attention, particularly with regard to installing large-scale floating PV for dam lakes and reservoirs in Korea. In this study, the potentiality of floating PV is evaluated, and the power production is estimated for 3401 reservoirs. To select a suitable reservoir for floating PV installation, we constructed and analyzed the water depth database using OpenAPI. We also used the typical meteorological year (TMY) data and topographical information to predict the irradiance distribution. As a result, the annual power production by all possible reservoirs was estimated to be 2932 GWh, and the annual GHG reduction amount was approximately 1,294,450 tons. In particular, Jeollanam-do has many reservoirs and was evaluated as suitable for floating PV installation because of its high solar irradiance. The results can be used to estimate priorities and potentiality as a preliminary analysis for floating PV installation.


Sign in / Sign up

Export Citation Format

Share Document