scholarly journals Resting state inter and intra hemispheric human brain functional connectivity

Author(s):  
Qolamreza R. Razlighi ◽  
Jason Steffener ◽  
Christian Habeck ◽  
Andrew Laine ◽  
Yaakov Stern
2020 ◽  
Author(s):  
Adam Eichenbaum ◽  
Ioannis Pappas ◽  
Daniel Lurie ◽  
Jessica R. Cohen ◽  
Mark D’Esposito

AbstractMeasures of human brain functional connectivity acquired during the resting-state track critical aspects of behavior. Recently, fluctuations in resting-state functional connectivity patterns – typically averaged across in traditional analyses – have been considered for their potential neuroscientific relevance. There exists a lack of research on the differences between traditional “static” measures of functional connectivity and newly-considered “time-varying” measures as they relate to human behavior. Using functional magnetic resonance imagining (fMRI) data collected at rest, and a battery of behavioral measures collected outside the scanner, we determined the degree to which each modality captures aspects of personality and cognitive ability. Measures of time-varying functional connectivity were derived by fitting a Hidden Markov Model. To determine behavioral relationships, static and time-varying connectivity measures were submitted separately to canonical correlation analysis. A single relationship between static functional connectivity and behavior existed, defined by measures of personality and stable behavioral features. However, two relationships were found when using time-varying measures. The first relationship was similar to the static case. The second relationship was unique, defined by measures reflecting trialwise behavioral variability. Our findings suggest that time-varying measures of functional connectivity are capable of capturing unique aspects of behavior to which static measures are insensitive.Author SummaryCorrelated patterns of brain activity measured in the absence of any prescribed task show meaningful temporal fluctuations. However, the manner by which such fluctuations track aspects of human behavior remains unresolved. The current report takes a data-driven approach to characterize how time-varying patterns of human brain functional connectivity differ from traditional static measures in their ability to track aspects of personality and cognitive ability. We determine that time-varying patterns of functional connectivity not only track similar aspects of behavior as do static measures, but also unique behavioral qualities as well, specifically those that reflect behavioral variability. These results highlight the importance and relevance of examining time-varying measures of functional connectivity.


Diabetes Care ◽  
2014 ◽  
Vol 37 (6) ◽  
pp. 1689-1696 ◽  
Author(s):  
Yu-Chen Chen ◽  
Yun Jiao ◽  
Ying Cui ◽  
Song-An Shang ◽  
Jie Ding ◽  
...  

2018 ◽  
Vol 29 (10) ◽  
pp. 4208-4222 ◽  
Author(s):  
Yuehua Xu ◽  
Miao Cao ◽  
Xuhong Liao ◽  
Mingrui Xia ◽  
Xindi Wang ◽  
...  

Abstract Individual variability in human brain networks underlies individual differences in cognition and behaviors. However, researchers have not conclusively determined when individual variability patterns of the brain networks emerge and how they develop in the early phase. Here, we employed resting-state functional MRI data and whole-brain functional connectivity analyses in 40 neonates aged around 31–42 postmenstrual weeks to characterize the spatial distribution and development modes of individual variability in the functional network architecture. We observed lower individual variability in primary sensorimotor and visual areas and higher variability in association regions at the third trimester, and these patterns are generally similar to those of adult brains. Different functional systems showed dramatic differences in the development of individual variability, with significant decreases in the sensorimotor network; decreasing trends in the visual, subcortical, and dorsal and ventral attention networks, and limited change in the default mode, frontoparietal and limbic networks. The patterns of individual variability were negatively correlated with the short- to middle-range connection strength/number and this distance constraint was significantly strengthened throughout development. Our findings highlight the development and emergence of individual variability in the functional architecture of the prenatal brain, which may lay network foundations for individual behavioral differences later in life.


2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0026
Author(s):  
Jonathan A. Dudley ◽  
Jed A. Diekfuss ◽  
Weihong Yuan ◽  
Kim D. Barber Foss ◽  
Christopher A. DiCesare ◽  
...  

Background: Cumulative exposure to repetitive sub-concussive head impacts in contact sports may have deleterious effects on brain function, even in the absence of acute symptoms. Moreover, anatomical and biomechanical factors may predispose female athletes to higher risk compared to males. At present, there is no effective injury prevention strategy to protect female athletes from sports-related head impact. Hypothesis/Purpose: (1). We aimed to use resting-state fMRI to investigate the effect of a full season of competitive soccer on brain functional network integrity in female high school athletes. (2). We also aimed to evaluate the efficacy of a jugular vein compression neck collar device, designed to mitigate potential injury by reducing the brain slosh effect. Methods: A total of 125 high school female soccer athletes were included in this study. These athletes were assigned randomly to a non-collar (n=55, age=16.06±1.06 yrs) or collar group (n=70, 15.81±0.95 yrs) before the season started. High resolution 3D T1-weighted images and resting-state fMRI data were collected prospectively at pre-season and again at post-season. Data processing and analysis were conducted in the MATLAB-based programs Statistical Parametric Mapping (SPM12) and Connectivity Toolbox (Conn). Functional connectivity was computed between each pair of 105 anatomically delineated regions of interest (ROI). Network Based Statistics were applied to detect coherent patterns of altered connectivity from pre- to post-season. Results: The non-collar group showed a significant pattern of altered connectivity (p-FWE = 0.047) spanning 60% of ROIs (63/105) and 1.7% of ROI-ROI connections (94/5,460). 65 of the 94 altered connections were weakened from pre-to-post season and tended to occur in the right hemisphere. 29 of the 94 altered connections were strengthened from pre-to-post season and tended to involve regions in the occipital lobe. The collar group did not show any statistically significant change (p-FWE = 0.223). Conclusion: The results of this study indicate that exposure to repetitive sub-concussive head impacts during a single season of competitive female soccer induces changes in brain functional connectivity. The observed increases and decreases of functional connectivity strength comprising the pattern of altered connectivity are congruent with a heterogeneous response to insult wherein some connections are reduced in strength due to neuronal damage and other “detour” connections are strengthened to preserve network function. Comparatively, the absence of alterations in the collar group suggest that the jugular vein compression collar may have generated a potentially protective effect to preserve brain functional network integrity during exposure to head impacts. [Figure: see text]


2015 ◽  
Vol 10 (4) ◽  
pp. 1117-1126 ◽  
Author(s):  
Amgad Droby ◽  
Kenneth S. L. Yuen ◽  
Muthuraman Muthuraman ◽  
Sarah-Christina Reitz ◽  
Vinzenz Fleischer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document