3-To-1 Pipeline: Restructuring Transfer Learning Pipelines for Medical Imaging Classification via Optimized GAN Synthetic Images

Author(s):  
Ross Zhi Jian Choong ◽  
Seth Austin Harding ◽  
Bo-yen Tang ◽  
Shih-wei Liao
2021 ◽  
Author(s):  
Yang Yang ◽  
Xueyan Mei ◽  
Philip Robson ◽  
Brett Marinelli ◽  
Mingqian Huang ◽  
...  

Abstract Most current medical imaging Artificial Intelligence (AI) relies upon transfer learning using convolutional neural networks (CNNs) created using ImageNet, a large database of natural world images, including cats, dogs, and vehicles. Size, diversity, and similarity of the source data determine the success of the transfer learning on the target data. ImageNet is large and diverse, but there is a significant dissimilarity between its natural world images and medical images, leading Cheplygina to pose the question, “Why do we still use images of cats to help Artificial Intelligence interpret CAT scans?”. We present an equally large and diversified database, RadImageNet, consisting of 5 million annotated medical images consisting of CT, MRI, and ultrasound of musculoskeletal, neurologic, oncologic, gastrointestinal, endocrine, and pulmonary pathologies over 450,000 patients. The database is unprecedented in scale and breadth in the medical imaging field, constituting a more appropriate basis for medical imaging transfer learning applications. We found that RadImageNet transfer learning outperformed ImageNet in multiple independent applications, including improvements for bone age prediction from hand and wrist x-rays by 1.75 months (p<0.0001), pneumonia detection in ICU chest x-rays by 0.85% (p<0.0001), ACL tear detection on MRI by 10.72% (p<0.0001), SARS-CoV-2 detection on chest CT by 0.25% (p<0.0001) and hemorrhage detection on head CT by 0.13% (p<0.0001). The results indicate that our pre-trained models that are open-sourced on public domains will be a better starting point for transfer learning in radiologic imaging AI applications, including applications involving medical imaging modalities or anatomies not included in the RadImageNet database.


2020 ◽  
Vol 10 (13) ◽  
pp. 4523 ◽  
Author(s):  
Laith Alzubaidi ◽  
Mohammed A. Fadhel ◽  
Omran Al-Shamma ◽  
Jinglan Zhang ◽  
J. Santamaría ◽  
...  

One of the main challenges of employing deep learning models in the field of medicine is a lack of training data due to difficulty in collecting and labeling data, which needs to be performed by experts. To overcome this drawback, transfer learning (TL) has been utilized to solve several medical imaging tasks using pre-trained state-of-the-art models from the ImageNet dataset. However, there are primary divergences in data features, sizes, and task characteristics between the natural image classification and the targeted medical imaging tasks. Therefore, TL can slightly improve performance if the source domain is completely different from the target domain. In this paper, we explore the benefit of TL from the same and different domains of the target tasks. To do so, we designed a deep convolutional neural network (DCNN) model that integrates three ideas including traditional and parallel convolutional layers and residual connections along with global average pooling. We trained the proposed model against several scenarios. We utilized the same and different domain TL with the diabetic foot ulcer (DFU) classification task and with the animal classification task. We have empirically shown that the source of TL from the same domain can significantly improve the performance considering a reduced number of images in the same domain of the target dataset. The proposed model with the DFU dataset achieved F1-score value of 86.6% when trained from scratch, 89.4% with TL from a different domain of the targeted dataset, and 97.6% with TL from the same domain of the targeted dataset.


Author(s):  
Fouzia Altaf ◽  
Syed M. S. Islam ◽  
Naeem Khalid Janjua

AbstractDeep learning has provided numerous breakthroughs in natural imaging tasks. However, its successful application to medical images is severely handicapped with the limited amount of annotated training data. Transfer learning is commonly adopted for the medical imaging tasks. However, a large covariant shift between the source domain of natural images and target domain of medical images results in poor transfer learning. Moreover, scarcity of annotated data for the medical imaging tasks causes further problems for effective transfer learning. To address these problems, we develop an augmented ensemble transfer learning technique that leads to significant performance gain over the conventional transfer learning. Our technique uses an ensemble of deep learning models, where the architecture of each network is modified with extra layers to account for dimensionality change between the images of source and target data domains. Moreover, the model is hierarchically tuned to the target domain with augmented training data. Along with the network ensemble, we also utilize an ensemble of dictionaries that are based on features extracted from the augmented models. The dictionary ensemble provides an additional performance boost to our method. We first establish the effectiveness of our technique with the challenging ChestXray-14 radiography data set. Our experimental results show more than 50% reduction in the error rate with our method as compared to the baseline transfer learning technique. We then apply our technique to a recent COVID-19 data set for binary and multi-class classification tasks. Our technique achieves 99.49% accuracy for the binary classification, and 99.24% for multi-class classification.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1590
Author(s):  
Laith Alzubaidi ◽  
Muthana Al-Amidie ◽  
Ahmed Al-Asadi ◽  
Amjad J. Humaidi ◽  
Omran Al-Shamma ◽  
...  

Deep learning requires a large amount of data to perform well. However, the field of medical image analysis suffers from a lack of sufficient data for training deep learning models. Moreover, medical images require manual labeling, usually provided by human annotators coming from various backgrounds. More importantly, the annotation process is time-consuming, expensive, and prone to errors. Transfer learning was introduced to reduce the need for the annotation process by transferring the deep learning models with knowledge from a previous task and then by fine-tuning them on a relatively small dataset of the current task. Most of the methods of medical image classification employ transfer learning from pretrained models, e.g., ImageNet, which has been proven to be ineffective. This is due to the mismatch in learned features between the natural image, e.g., ImageNet, and medical images. Additionally, it results in the utilization of deeply elaborated models. In this paper, we propose a novel transfer learning approach to overcome the previous drawbacks by means of training the deep learning model on large unlabeled medical image datasets and by next transferring the knowledge to train the deep learning model on the small amount of labeled medical images. Additionally, we propose a new deep convolutional neural network (DCNN) model that combines recent advancements in the field. We conducted several experiments on two challenging medical imaging scenarios dealing with skin and breast cancer classification tasks. According to the reported results, it has been empirically proven that the proposed approach can significantly improve the performance of both classification scenarios. In terms of skin cancer, the proposed model achieved an F1-score value of 89.09% when trained from scratch and 98.53% with the proposed approach. Secondly, it achieved an accuracy value of 85.29% and 97.51%, respectively, when trained from scratch and using the proposed approach in the case of the breast cancer scenario. Finally, we concluded that our method can possibly be applied to many medical imaging problems in which a substantial amount of unlabeled image data is available and the labeled image data is limited. Moreover, it can be utilized to improve the performance of medical imaging tasks in the same domain. To do so, we used the pretrained skin cancer model to train on feet skin to classify them into two classes—either normal or abnormal (diabetic foot ulcer (DFU)). It achieved an F1-score value of 86.0% when trained from scratch, 96.25% using transfer learning, and 99.25% using double-transfer learning.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1497
Author(s):  
Harold Achicanoy ◽  
Deisy Chaves ◽  
Maria Trujillo

Deep learning applications on computer vision involve the use of large-volume and representative data to obtain state-of-the-art results due to the massive number of parameters to optimise in deep models. However, data are limited with asymmetric distributions in industrial applications due to rare cases, legal restrictions, and high image-acquisition costs. Data augmentation based on deep learning generative adversarial networks, such as StyleGAN, has arisen as a way to create training data with symmetric distributions that may improve the generalisation capability of built models. StyleGAN generates highly realistic images in a variety of domains as a data augmentation strategy but requires a large amount of data to build image generators. Thus, transfer learning in conjunction with generative models are used to build models with small datasets. However, there are no reports on the impact of pre-trained generative models, using transfer learning. In this paper, we evaluate a StyleGAN generative model with transfer learning on different application domains—training with paintings, portraits, Pokémon, bedrooms, and cats—to generate target images with different levels of content variability: bean seeds (low variability), faces of subjects between 5 and 19 years old (medium variability), and charcoal (high variability). We used the first version of StyleGAN due to the large number of publicly available pre-trained models. The Fréchet Inception Distance was used for evaluating the quality of synthetic images. We found that StyleGAN with transfer learning produced good quality images, being an alternative for generating realistic synthetic images in the evaluated domains.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ruixin Yang ◽  
Yingyan Yu

In the era of digital medicine, a vast number of medical images are produced every day. There is a great demand for intelligent equipment for adjuvant diagnosis to assist medical doctors with different disciplines. With the development of artificial intelligence, the algorithms of convolutional neural network (CNN) progressed rapidly. CNN and its extension algorithms play important roles on medical imaging classification, object detection, and semantic segmentation. While medical imaging classification has been widely reported, the object detection and semantic segmentation of imaging are rarely described. In this review article, we introduce the progression of object detection and semantic segmentation in medical imaging study. We also discuss how to accurately define the location and boundary of diseases.


Sign in / Sign up

Export Citation Format

Share Document