Results of a Monte Carlo based risk analysis on the impact of PEVs to the distribution grid

Author(s):  
Daniel Beyer ◽  
Stephan Ruhe ◽  
Peter Bretschneider ◽  
Jens Ehrhardt
Author(s):  
Vladimíra Osadská

Abstract In this paper, we review basic stochastic methods which can be used to extend state-of-the-art deterministic analytical methods for risk analysis. We can conclude that the standard deterministic analytical methods highly depend on the practical experience and knowledge of the evaluator and therefore, the stochastic methods should be introduced. The new risk analysis methods should consider the uncertainties in input values. We present how large is the impact on the results of the analysis solving practical example of FMECA with uncertainties modelled using Monte Carlo sampling.


Author(s):  
Devi Pratami

A project always has risks that can lead to project failure. In the project, a risk analysis is required to provide an evaluation for the project to proceed as planned. In the event of inadequate planning and ineffective control, it will result in irregularities identified as a risk to the project. This study aims to analyze the qualitative risk on Fiber Optic Installaion project in Sukabumi, West Java, Indonesia. In addition, risk assessment is undertaken on project implementation. Assessment of risk using the impact and probability to measure the impact of risk occurrence. The impacts are more detailed by classified by time impact, cost impact, quality impact, safety and security impact, proximity. The result is there are 36 risk that may occur and mostly risks are associaated by quality and safety&security impact.


Author(s):  
Sebastian Eisele ◽  
Fabian M. Draber ◽  
Steffen Grieshammer

First principles calculations and Monte Carlo simulations reveal the impact of defect interactions on the hydration of barium-zirconate.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1889
Author(s):  
Arthur Bongrand ◽  
Charbel Koumeir ◽  
Daphnée Villoing ◽  
Arnaud Guertin ◽  
Ferid Haddad ◽  
...  

Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose–response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose–response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 830
Author(s):  
Filipe F. C. Silva ◽  
Pedro M. S. Carvalho ◽  
Luís A. F. M. Ferreira

The dissemination of low-carbon technologies, such as urban photovoltaic distributed generation, imposes new challenges to the operation of distribution grids. Distributed generation may introduce significant net-load asymmetries between feeders in the course of the day, resulting in higher losses. The dynamic reconfiguration of the grid could mitigate daily losses and be used to minimize or defer the need for network reinforcement. Yet, dynamic reconfiguration has to be carried out in near real-time in order to make use of the most updated load and generation forecast, this way maximizing operational benefits. Given the need to quickly find and update reconfiguration decisions, the computational complexity of the underlying optimal scheduling problem is studied in this paper. The problem is formulated and the impact of sub-optimal solutions is illustrated using a real medium-voltage distribution grid operated under a heavy generation scenario. The complexity of the scheduling problem is discussed to conclude that its optimal solution is infeasible in practical terms if relying upon classical computing. Quantum computing is finally proposed as a way to handle this kind of problem in the future.


MRS Advances ◽  
2017 ◽  
Vol 2 (48) ◽  
pp. 2627-2632 ◽  
Author(s):  
Poppy Siddiqua ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTWe examine how stress has the potential to shape the character of the electron transport that occurs within ZnO. In order to narrow the scope of this analysis, we focus on a determination of the velocity-field characteristics associated with bulk wurtzite ZnO. Monte Carlo simulations of the electron transport are pursued for the purposes of this analysis. Rather than focusing on the impact of stress in of itself, instead we focus on the changes that occur to the energy gap through the application of stress, i.e., energy gap variations provide a proxy for the amount of stress. Our results demonstrate that stress plays a significant role in shaping the form of the velocity-field characteristics associated with ZnO. This dependence could potentially be exploited for device application purposes.


Sign in / Sign up

Export Citation Format

Share Document