A practical evaluation of I/sub DDQ/ test strategies for deep submicron production test application. Experiences and targets from the field

Author(s):  
A. Fudoli ◽  
A. Ascagni ◽  
D. Appello ◽  
H. Manhaeve
Author(s):  
W. Maly ◽  
T. Zanon ◽  
T. Vogels

Abstract This paper proposes a taxonomy of process-induced deformations of IC structures. Such a taxonomy is envisioned as a foundation for yield modeling and development of test strategies, as well as, for design of ICs with redundancy. It is proposed to address the rapidly growing complexity of interaction between process-induced deformations of IC structures and steadily shrinking geometry of deep submicron ICs.


Author(s):  
Yuki YOSHIKAWA ◽  
Tomomi NUWA ◽  
Hideyuki ICHIHARA ◽  
Tomoo INOUE

Author(s):  
Amy Poe ◽  
Steve Brockett ◽  
Tony Rubalcava

Abstract The intent of this work is to demonstrate the importance of charged device model (CDM) ESD testing and characterization by presenting a case study of a situation in which CDM testing proved invaluable in establishing the reliability of a GaAs radio frequency integrated circuit (RFIC). The problem originated when a sample of passing devices was retested to the final production test. Nine of the 200 sampled devices failed the retest, thus placing the reliability of all of the devices in question. The subsequent failure analysis indicated that the devices failed due to a short on one of two capacitors, bringing into question the reliability of the dielectric. Previous ESD characterization of the part had shown that a certain resistor was likely to fail at thresholds well below the level at which any capacitors were damaged. This paper will discuss the failure analysis techniques which were used and the testing performed to verify the failures were actually due to ESD, and not caused by weak capacitors.


Author(s):  
D.S. Patrick ◽  
L.C. Wagner ◽  
P.T. Nguyen

Abstract Failure isolation and debug of CMOS integrated circuits over the past several years has become increasingly difficult to perform on standard failure analysis functional testers. Due to the increase in pin counts, clock speeds, increased complexity and the large number of power supply pins on current ICS, smaller and less equipped testers are often unable to test these newer devices. To reduce the time of analysis and improve the failure isolation capabilities for failing ICS, failure isolation is now performed using the same production testers used in product development, multiprobe and final test. With these production testers, the test hardware, program and pattern sets are already available and ready for use. By using a special interface that docks the production test head to failure isolation equipment such as the emission microscope, liquid crystal station and E-Beam prober, the analyst can quickly and easily isolate the faillure on an IC. This also enables engineers in design, product engineering and the waferfab yield enhancement groups to utilize this equipment to quickly solve critical design and yield issues. Significant cycle time savings have been achieved with the migration to this method of electrical stimulation for failure isolation.


Author(s):  
Sweta Pendyala ◽  
Dave Albert ◽  
Katherine Hawkins ◽  
Michael Tenney

Abstract Resistive gate defects are unusual and difficult to detect with conventional techniques [1] especially on advanced devices manufactured with deep submicron SOI technologies. An advanced localization technique such as Scanning Capacitance Imaging is essential for localizing these defects, which can be followed by DC probing, dC/dV, CV (Capacitance-Voltage) measurements to completely characterize the defect. This paper presents a case study demonstrating this work flow of characterization techniques.


Author(s):  
Rose Emergo ◽  
Steve Brockett ◽  
Pat Hamilton

Abstract A single power amplifier-duplexer device was submitted by a customer for analysis. The device was initially considered passing when tested against the production test. However, further electrical testing suggested that the device was stuck in a single power mode for a particular frequency band at cold temperatures only. This paper outlines the systematic isolation of a parasitic Schottky diode formed by a base contactcollector punch through process defect that pulled down the input of a NOR gate leading to the incorrect logic state. Note that this parasitic Schottky diode is parallel to the basecollector junction. It was observed that the logic failure only manifested at colder temperatures because the base contact only slightly diffused into the collector layer. Since the difference in the turn-on voltages between the base-collector junction and the parasitic Schottky diode increases with decreasing temperature, the effect of the parasitic diode is only noticeable at lower temperatures.


Sign in / Sign up

Export Citation Format

Share Document