Impact of local meteorological parameters on wind characteristics in specific recording conditions — High altitude wind speed in transient climate zones

Eurocon 2013 ◽  
2013 ◽  
Author(s):  
Alma Ademovic ◽  
Mustafa Music
2020 ◽  
Vol 12 (6) ◽  
pp. 2467 ◽  
Author(s):  
Fei Zhao ◽  
Yihan Gao ◽  
Tengyuan Wang ◽  
Jinsha Yuan ◽  
Xiaoxia Gao

To study the wake development characteristics of wind farms in complex terrains, two different types of Light Detection and Ranging (LiDAR) were used to conduct the field measurements in a mountain wind farm in Hebei Province, China. Under two different incoming wake conditions, the influence of wind shear, terrain and incoming wind characteristics on the development trend of wake was analyzed. The results showed that the existence of wind shear effect causes asymmetric distribution of wind speed in the wake region. The relief of the terrain behind the turbine indicated a subsidence of the wake centerline, which had a linear relationship with the topography altitudes. The wake recovery rates were calculated, which comprehensively validated the conclusion that the wake recovery rate is determined by both the incoming wind turbulence intensity in the wake and the magnitude of the wind speed.


Author(s):  
Suwarno Suwarno ◽  
Rohana Rohana

The development of modeling wind speed plays a very important in helping to obtain the actual wind speed data for the benefit of the power plant planning in the future. The wind speed in this paper is obtained from a PCE-FWS 20 type measuring instrument with a duration of 30 minutes which is accumulated into monthly data for one year (2019). Despite the many wind speed modeling that has been done by researchers. Modeling wind speeds proposed in this study were obtained from the modified Rayleigh distribution. In this study, the Rayleigh scale factor (<em>C<sub>r</sub></em>) and modified Rayleigh scale factor (<em>C<sub>m</sub></em>) were calculated. The observed wind speed is compared with the predicted wind characteristics. The data fit test used correlation coefficient (R<sup>2</sup>), root means square error (RMSE), and mean absolute percentage error (MAPE). The results of the proposed modified Rayleigh model provide very good results for users.


Author(s):  
Nastaran Talepour ◽  
Mohammad Sadegh Hassanvand ◽  
Effat Abbasi-Montazeri ◽  
Seyed Mahmoud Latifi ◽  
Neamat Jaafarzadeh Haghighi Fard

Introduction: Airborne Cladosporium spores in different regions of the world are known as the main cause of allergic diseases. This study aimed to identify the Cladosporium species airborne fungi in Ahvaz wastewater treat- ment plant area and its adjacent places and check the effect of some meteoro- logical parameters on their emissions. Materials and methods: Cladosporium spores were cultured on Sabouraud`s dextrose agar (SDA) medium in both cold and warm seasons. The passive sampling method was performed and after incubation, colonies were counted as CFU/Plate/h. Then, according to the macroscopic and microscopic charac- teristics of the genus, the fungal was studied. The meteorological parameters including temperature, humidity, air pressure, dew point, wind speed, and ultraviolet index were measured. Results: At least, 3358 colonies were counted. 1433 colonies were related  to the Cladosporium species. The amount of Cladosporium in indoor air was 46% of the total Cladosporium. The average of meteorological parameters includes temperature, humidity, air pressure, dew point, wind speed and UV index during the study were 27.8 °C, 32.9%, 548.7 °Kpa, 3.6°, 9.1 km / h and 3.9 respectively. 42.6% of the total number of colonies was related to the Cladosporium species. Cladospiromes had a direct correlation with the dew point, temperature, humidity, air pressure, wind speed, and ultraviolet index (Pvalue<0.05). Primary sludge dewatering has the greatest role in the Cladospo- rium spores emission. Conclusion: Considering the importance of Cladosporium spores in the ap- pearance of allergic diseases, and given that wastewater treatment workers spend most of their time outside, observing health and preventive measures is necessary in this regard.


Author(s):  
Radoslav Kojić ◽  
Matija Antić

Meteorological parameters and traffic flows have a direct impact on air quality in large urban areas, and hence on the quality of life in them. A large number of done surveys confirmed the great dependence of the concentration of ground-level ozone (O3) upon meteorological parameters and the size, structure and imbalances of traffic flows. As part of the research conducted in the period from November 5th to December 8th 2014 in Brcko in Muderis Ibrahimbegic St concentrations of ground-level ozone (O3) were measured, meteorological parameters (temperature, humidity, wind speed and intensity of solar radiation) and characteristics of traffic flow of road motor vehicles. The maximum concentrations of ground-level ozone (O3) in the measurement period was 106.54μg/m³, while the minimum concentration was 4.794μg/m³. By analyzing the results of measurements the high coefficient of correlation between wind speed, air temperature and humidity was established. The correlation coefficient between the traffic flows on the one hand and the concentration of ground-level ozone (O3), on the other hand is very low and does not exceed the value of 0.301. A negative correlation coefficient between traffic flows and concentrations of ground-level ozone (O3) is also observed in the certain time of the day.


2010 ◽  
Vol 28 (6) ◽  
pp. 1199-1205 ◽  
Author(s):  
S. K. Sharma ◽  
T. K. Mandal ◽  
B. C. Arya ◽  
M. Saxena ◽  
D. K. Shukla ◽  
...  

Abstract. In this paper, we present the effect of total solar eclipse on surface O3, NO, NO2, NH3, CO mixing ratio and the meteorological parameters on 15 January 2010 at Thiruvanathapuram, India. On the day of total solar eclipse (i.e., 15 January 2010), the decrease in mixing ratio of surface O3 and NO2 is observed after the beginning of the solar eclipse events (11:15 to 15:30). Decrease in surface O3 may be due to decreased efficiency of the photochemical ozone formation, whereas, mixing ratio of NO and NH3 have been changed following the night time chemistry. Surface O3 reduced to 20.3 ppb after 22 min of full phase of the eclipse. During the solar eclipse period, the ambient temperature and wind speed have decreased, whereas, relative humidity has increased as expected.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5135
Author(s):  
Tetsuya Kogaki ◽  
Kenichi Sakurai ◽  
Susumu Shimada ◽  
Hirokazu Kawabata ◽  
Yusuke Otake ◽  
...  

Downwind turbines have favorable characteristics such as effective energy capture in up-flow wind conditions over complex terrains. They also have reduced risk of severe accidents in the event of disruptions to electrical networks during strong storms due to the free-yaw effect of downwind turbines. These favorable characteristics have been confirmed by wind-towing tank experiments and computational fluid dynamics (CFD) simulations. However, these advantages have not been fully demonstrated in field experiments on actual wind farms. In this study—although the final objective was to demonstrate the potential advantages of downwind turbines through field experiments—field measurements were performed using a vertical-profiling light detection and ranging (LiDAR) system on a wind farm with downwind turbines installed in complex terrains. To deduce the horizontal wind speed, vertical-profiling LiDARs assume that the flow of air is uniform in space and time. However, in complex terrains and/or in wind farms where terrain and/or wind turbines cause flow distortion or disturbances in time and space, this assumption is not valid, resulting in erroneous wind speed estimates. The magnitude of this error was evaluated by comparing LiDAR measurements with those obtained using a cup anemometer mounted on a meteorological mast and detailed analysis of line-of-sight wind speeds. A factor that expresses the nonuniformity of wind speed in the horizontal measurement plane of vertical-profiling LiDAR is proposed to estimate the errors in wind speed. The possibility of measuring and evaluating various wind characteristics such as flow inclination angles, turbulence intensities, wind shear and wind veer, which are important for wind turbine design and for wind farm operation is demonstrated. However, additional evidence of actual field measurements on wind farms in areas with complex terrains is required in order to obtain more universal and objective evaluations.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040109
Author(s):  
Yi-Lei Song ◽  
Lin-Lin Tian ◽  
Ning Zhao

During a whole-day period, profiles of mean wind speed, wind shear and turbulence level shows great variability due to continuously varying atmospheric stability. Clearly understanding the spatial and temporal behaviors of the atmospheric wind flow is of great importance for science purposes. Large-eddy simulation (LES) technique is employed here to reproduce the evolution of atmospheric flow during a diurnal cycle. With the obtained LES results, wind characteristics in terms of wind speed, wind shear, turbulence intensity and turbulent kinetic energy can be examined referring to the stability classification. Besides, wind profiles obtained using currently available engineering models are also included for comparison. Disparities between the model predictions and the LES results illustrate that the standard engineering models cannot well capture the wind characteristics driven by the varying atmospheric stability solely, and a further improvement in models is highly needed.


Author(s):  
S.I. Pyasetska ◽  
N.P. Grebenyuk ◽  
S.V. Savchuk

The article presents the results of the study of the determination of the correlation connection between a number of meteorological values at the beginning of the deposition of ice on the wires of a standard ice-cream machine in certain months of the cold period of the year on the territory of Ukraine during 2001-2013. The research was conducted for 3 winter months, as well as for March and November. The pair of meteorological parameters have been determined at the beginning of the deposition of ice that have a statistically significant correlation coefficient and a spatial-temporal distribution of the distribution in certain months across the territory of Ukraine has been obtained. The most common variant of the statistically significant connection between individual meteorological parameters was the connection between the temperature of the water column (average, maximum, minimum) and relative humidity of air (average, maximum). Thus, for almost all months studied, a statistically significant correlation between the temperature of the vapor (average, maximum, minimum) and relative humidity of air (average, maximum) was established. For the winter months, the correlation coefficient of this connection was positive, and for March and November, it was negative. A widespread version of a statistically significant connection was the relationship between the air temperature (average, maximum, minimum) and the height of the snow cover. This connection for the months studied turned out to be negative. The variants of negative statistically significant connection between average wind speed and average relative humidity of air (January-February, December), average and maximum wind speed and sea-level pressure (November), and also between daily amount precipitation and snow (March), daily rainfall and wind speed (average, maximum), and pressure at sea level (November). During the months of the cold period of the year, statistically significant connections between the air temperature (average, maximum) and pressure at sea level (November), wind speed (average, maximum) and average humidity (January, December), pressure on sea levels and average relative humidity (March). Also, there were isolated cases of statistically significant correlation between snow and sea level pressure (December). The most frequently statistically significant connections between meteorological values at the dates of deposition of ice on the wires of a standard icing machine were observed at stations in the central, northeastern, eastern and separate southern regions.


Sign in / Sign up

Export Citation Format

Share Document