Can Modifications Make Electric Pressure Cookers ‘Minigrid Friendly?’

Author(s):  
Daniel Zimmerle ◽  
Casey Quinn ◽  
Jason Quinn ◽  
Maggie Clark ◽  
John Volckens
Keyword(s):  
Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 503
Author(s):  
Jaehyun Lee ◽  
Ehsan Esmaili ◽  
Giho Kang ◽  
Baekhoon Seong ◽  
Hosung Kang ◽  
...  

The dimple occurs by sudden pressure inversion at the droplet’s bottom interface when a droplet collides with the same liquid-phase or different solid-phase. The air film entrapped inside the dimple is a critical factor affecting the sequential dynamics after coalescence and causing defects like the pinhole. Meanwhile, in the coalescence dynamics of an electrified droplet, the droplet’s bottom interfaces change to a conical shape, and droplet contact the substrate directly without dimple formation. In this work, the mechanism for the dimple’s suppression (interfacial change to conical shape) was studied investigating the effect of electric pressure. The electric stress acting on a droplet interface shows the nonlinear electric pressure adding to the uniform droplet pressure. This electric stress locally deforms the droplet’s bottom interface to a conical shape and consequentially enables it to overcome the air pressure beneath the droplet. The electric pressure, calculated from numerical tracking for interface and electrostatic simulation, was at least 108 times bigger than the air pressure at the center of the coalescence. This work helps toward understanding the effect of electric stress on droplet coalescence and in the optimization of conditions in solution-based techniques like printing and coating.


Author(s):  
Nguyen Ba Hung ◽  
Le Anh Tuan ◽  
Ocktaeck Lim

A model-based study is conducted to examine the operating characteristics of an injection system applied on CNG fueled vehicles. This injection system is a combination of an electric pressure regulator, a rail tube, and a solenoid injector. The electric pressure regulator has a great potential to be widely used in injection systems of natural gas-fueled engines due to its flexible operation, which can help to improve the engine performance and reduce emission. This paper presents a simulation study using mathematical models to describe and analyze the operating characteristics of the gaseous fuel injection system, in which models of electric pressure regulator, solenoid fuel injector, and control model for electric pressure regulator are presented. The simulation results are compared with experimental data to validate the simulation models. Effects of working conditions, including coil resistance of the electric pressure regulator, inlet gas pressure, and set pressure in the rail tube, on the operating characteristics of the gaseous fuel injection system are investigated. Simulation results show that when the coil resistance of the electric pressure regulator is increased from 3.1 Ω to 4.1 Ω, the maximum fluctuation of the controlled gas pressure in the rail tube is reduced from 0.017 to 0.012 MPa, respectively. By decreasing the inlet gas pressure of the electric pressure regulator from 2.5 to 2.3 MPa, the controlled gas pressure in the rail tube is more stable with the maximum fluctuation significantly reduced from 0.012 to 0.002 MPa, respectively, which leads to stability in injection flow rate. The increase of set pressure in the rail tube from 0.5 to 0.7 MPa can help to improve the stability of the controlled gas pressure in the rail tube with the maximum fluctuation respectively reduced from 0.002 to 0.001 MPa.


1972 ◽  
Vol 5 (4) ◽  
pp. 137-141
Author(s):  
P H Clarke ◽  
M N Khayat ◽  
G A Harrow

A method of estimating the volumetric efficiency of an engine by using a piezo-electric pressure transducer to measure the compression pressure during a non-firing engine cycle is described and the results obtained are compared with those derived from a direct measurement of air flow. The results produced by the two techniques agree to within ±3% at speeds up to 2500 rpm and are in good agreement with those obtained from an infra-red exhaust gas analysis when the engine was firing.


2012 ◽  
Vol 622-623 ◽  
pp. 19-24
Author(s):  
P. Balasubramanian ◽  
Thiyagarajan Senthilvelan

In this study, input parameters of Electrical Discharge machining (EDM) process have been optimised for two different materials EN-8 and Die steel-D3 were machined by using sintered copper electrode. Analysis of variance (ANOVA) was applied to study the influences of process parameters viz: - peak current, pulse on time, di-electric pressure and diameter of electrode on material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR) for both materials. Response surface methodology (RSM) has been applied to optimise the multi responses in order to get maximum MRR, minimum TWR and minimum SR. Furthermore, mathematical model has been formulated to estimate the corresponding output responses for both work pieces. It has been observed that compared to EN 8 material, the MRR value is low and TWR is high for D3 material. However the SR value is marginally lower than obtained in EN8.R2 value is above 0.90 for both work pieces.


Sign in / Sign up

Export Citation Format

Share Document