Digital Display Recognition towards Connected Sensing Systems for Precision Agriculture

Author(s):  
Sanket Junagade ◽  
Prachin Jain ◽  
Sanat Sarangi ◽  
Srinivasu Pappula
Author(s):  
G. Bareth ◽  
A. Bolten ◽  
M. L. Gnyp ◽  
S. Reusch ◽  
J. Jasper

The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (< 5 kg) is well established, the miniaturization of sensors in the last years also enables hyperspectral data acquisition from those platforms. From both, RGB and hyperspectral data, vegetation indices (VIs) are computed to estimate crop growth parameters. In this contribution, we compare two different sensing approaches from a low-weight UAV platform (< 5 kg) for monitoring a nitrogen field experiment of winter wheat and a corresponding farmers’ field in Western Germany. (i) A standard digital compact camera was flown to acquire RGB images which are used to compute the RGBVI and (ii) NDVI is computed from a newly modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1) to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2) investigate the UAV-based performance of the modified Yara N-Sensor, and (3) compare the results of the two different UAV-based sensing approaches for winter wheat.


1998 ◽  
Vol 38 (7) ◽  
pp. 765 ◽  
Author(s):  
R. A. Viscarra Rossel ◽  
A. B. McBratney

Summary. This article reviews soil sampling and soil chemical analysis, discussing their implications from, and applications in, precision agriculture. The variability of a number of agriculturally important soil chemical properties was investigated and the ‘nugget’ variance or effect discussed in terms of its importance in determining the proportion of not only short-range spatial variation, but also sampling and measurement error. Comments were then made on the accuracy of laboratory methods. Analytical variances were compared with world-average and estimated nugget variances for a field in New South Wales, the comparison showing that analytical precision needs to be maintained or improved when developing or adapting analytical methods for precision agriculture. A simple cost-analysis showed that soil chemical analytical costs are much too large for economic use in precision agriculture, costs in Australia being higher than in the United States. The conclusion this paper draws is that, for large-scale implementation of precision agriculture, the development of field-deployed, ‘on-the-go’ proximal soil sensing systems and scanners is tremendously important. These sensing systems or scanners should aim to overcome current problems of high cost, labour, time and to some extent, imprecision of soil sampling and analysis to more efficiently and accurately represent the spatial variability of the measured properties.


Author(s):  
G. Bareth ◽  
A. Bolten ◽  
M. L. Gnyp ◽  
S. Reusch ◽  
J. Jasper

The development of UAV-based sensing systems for agronomic applications serves the improvement of crop management. The latter is in the focus of precision agriculture which intends to optimize yield, fertilizer input, and crop protection. Besides, in some cropping systems vehicle-based sensing devices are less suitable because fields cannot be entered from certain growing stages onwards. This is true for rice, maize, sorghum, and many more crops. Consequently, UAV-based sensing approaches fill a niche of very high resolution data acquisition on the field scale in space and time. While mounting RGB digital compact cameras to low-weight UAVs (&lt; 5 kg) is well established, the miniaturization of sensors in the last years also enables hyperspectral data acquisition from those platforms. From both, RGB and hyperspectral data, vegetation indices (VIs) are computed to estimate crop growth parameters. In this contribution, we compare two different sensing approaches from a low-weight UAV platform (&lt; 5 kg) for monitoring a nitrogen field experiment of winter wheat and a corresponding farmers’ field in Western Germany. (i) A standard digital compact camera was flown to acquire RGB images which are used to compute the RGBVI and (ii) NDVI is computed from a newly modified version of the Yara N-Sensor. The latter is a well-established tractor-based hyperspectral sensor for crop management and is available on the market since a decade. It was modified for this study to fit the requirements of UAV-based data acquisition. Consequently, we focus on three objectives in this contribution: (1) to evaluate the potential of the uncalibrated RGBVI for monitoring nitrogen status in winter wheat, (2) investigate the UAV-based performance of the modified Yara N-Sensor, and (3) compare the results of the two different UAV-based sensing approaches for winter wheat.


Author(s):  
Yekta Can Yildirim ◽  
Mustafa Yeniad

Agricultural monitoring and analysis of data to be used in management decisions to increase the quality, profitability, sufficiency, continuity and efficiency of agricultural production is called Precision Agriculture.[1]Precision Agriculture technologies aim to help the farmers with the decision making process by providing them information and control over their land, crop status and environment using remote sensing systems. Remote sensing systems use multispectral cameras to gather information, which filter different wavelengths of light in separate bands. Vegetation indices derived from the spectral bands of the remote sensing systems carry useful information about crop characteristics such as nitrogen content, chlorophyll content and water stress which supports the farmers to plan irrigation and pesticide spraying processes without the need of manual examination, providing a cost and time-efficient solution. This study aims to explore three specific Precision Agriculture applications, such as crop segmentation, illness detection and yield prediction on olive trees in Manisa, Turkey by using machine learning algorithms. Using the spectral band information gathered from an Orange-Cyan-NIR (OCN) camera embedded UAV system, vegetation health index was calculated and the data was preprocessed by segmentating the tree pixels from background based on those values using MiniBatchKMeans algorithm. Optimal features were selected based on accuracy comparison for yield and disease predictions. A Decision Tree Regressor (DTR) model was trained for yield prediction while a Random Forest Classifier (RFC) model was trained for disease prediction. The results showed that crop segmentation had an accuracy rate of 0.85-0.95, while DTR and RFC models had an R2 score of 0.99 and accuracy rate of 0.98 respectively, which displayed the importance and usefulness of vegetation indices.


Author(s):  
Martin Peckerar ◽  
Anastasios Tousimis

Solid state x-ray sensing systems have been used for many years in conjunction with scanning and transmission electron microscopes. Such systems conveniently provide users with elemental area maps and quantitative chemical analyses of samples. Improvements on these tools are currently sought in the following areas: sensitivity at longer and shorter x-ray wavelengths and minimization of noise-broadening of spectral lines. In this paper, we review basic limitations and recent advances in each of these areas. Throughout the review, we emphasize the systems nature of the problem. That is. limitations exist not only in the sensor elements but also in the preamplifier/amplifier chain and in the interfaces between these components.Solid state x-ray sensors usually function by way of incident photons creating electron-hole pairs in semiconductor material. This radiation-produced mobile charge is swept into external circuitry by electric fields in the semiconductor bulk.


2020 ◽  
pp. 637-656 ◽  
Author(s):  
Marco Medici ◽  
Søren Marcus Pedersen ◽  
Giacomo Carli ◽  
Maria Rita Tagliaventi

The purpose of this study is to analyse the environmental benefits of precision agriculture technology adoption obtained from the mitigation of negative environmental impacts of agricultural inputs in modern farming. Our literature review of the environmental benefits related to the adoption of precision agriculture solutions is aimed at raising farmers' and other stakeholders' awareness of the actual environmental impacts from this set of new technologies. Existing studies were categorised according to the environmental impacts of different agricultural activities: nitrogen application, lime application, pesticide application, manure application and herbicide application. Our findings highlighted the effects of the reduction of input application rates and the consequent impacts on climate, soil, water and biodiversity. Policy makers can benefit from the outcomes of this study developing an understanding of the environmental impact of precision agriculture in order to promote and support initiatives aimed at fostering sustainable agriculture.


2018 ◽  
Vol 7 (1) ◽  
pp. 2574-2579
Author(s):  
Divya Uniyal ◽  
◽  
Sourabh Dangwal ◽  
Govind Singh Negi ◽  
Saurabh Purohit ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Jan Piekarczyk

AbstractWith increasing intensity of agricultural crop production increases the need to obtain information about environmental conditions in which this production takes place. Remote sensing methods, including satellite images, airborne photographs and ground-based spectral measurements can greatly simplify the monitoring of crop development and decision-making to optimize inputs on agricultural production and reduce its harmful effects on the environment. One of the earliest uses of remote sensing in agriculture is crop identification and their acreage estimation. Satellite data acquired for this purpose are necessary to ensure food security and the proper functioning of agricultural markets at national and global scales. Due to strong relationship between plant bio-physical parameters and the amount of electromagnetic radiation reflected (in certain ranges of the spectrum) from plants and then registered by sensors it is possible to predict crop yields. Other applications of remote sensing are intensively developed in the framework of so-called precision agriculture, in small spatial scales including individual fields. Data from ground-based measurements as well as from airborne or satellite images are used to develop yield and soil maps which can be used to determine the doses of irrigation and fertilization and to take decisions on the use of pesticides.


Sign in / Sign up

Export Citation Format

Share Document