Analysis and Design of a Proportional-Integral Rate Controller for Streaming Videos

Author(s):  
Yingsong Huang ◽  
Shiwen Mao
Author(s):  
Suresh B. Reddy

Abstract Proportional-Integral (PI) and Proportional-Integral-Derivative (PID) controllers are among the most common schemes for control since their formulation nearly a century ago. They have been very successful in many applications, even as we have migrated from analog implementations to digital control systems. While there is rich literature for design and analysis of PI/PID controllers for linear time-invariant systems with modeled dynamics, the tools for analysis and design for nonlinear systems with unknown dynamics are limited, despite their known effectiveness. This paper extends previous observations about a form of discrete Time Delay Control’s equivalence to a generalized PI controller for more general canonical systems, with additional complimentary feedback linearization of known dynamics, as desired. In addition, sufficient conditions for Bounded Input-Bounded Output (BIBO) as well as exponential stability are developed in this paper for the form of discrete TDC that is closest to generalized discrete PI equivalent controller, for multi-input multi-output nonlinear systems, including nonaffine cases. Accordingly, design procedures are suggested for such discrete TDC, and generalized discrete PI controller for nonlinear systems.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1823
Author(s):  
José Francisco Sáez ◽  
Alfonso Baños

The proportional–integral plus Clegg integrator (PI + CI) controller is a hybrid extension of the proportional–integral (PI) controller that is able to overcome fundamental limitations of the linear and time-invariant control systems, potentially obtaining faster responses without increasing overshooting. This work focused on the analysis and design of PI + CI controllers and reset controllers in general, for the case of parallel multiple-input single-output (MISO) systems, extending previous design methods developed for the single-input single-output (SISO) case. Several design strategies were developed: one for first-order MISO plants achieving a flat response with a finite settling time, and for second-order MISO plants obtaining a fast response with a reduced overshoot and settling time in comparison with non-hybrid strategies. Several case studies were also developed to illustrate the potential of the proposed methods.


1996 ◽  
Vol 35 (01) ◽  
pp. 52-58 ◽  
Author(s):  
A. Mavromatis ◽  
N. Maglaveras ◽  
A. Tsikotis ◽  
G. Pangalos ◽  
V. Ambrosiadou ◽  
...  

AbstractAn object-oriented medical database management system is presented for a typical cardiologic center, facilitating epidemiological trials. Object-oriented analysis and design were used for the system design, offering advantages for the integrity and extendibility of medical information systems. The system was developed using object-oriented design and programming methodology, the C++ language and the Borland Paradox Relational Data Base Management System on an MS-Windows NT environment. Particular attention was paid to system compatibility, portability, the ease of use, and the suitable design of the patient record so as to support the decisions of medical personnel in cardiovascular centers. The system was designed to accept complex, heterogeneous, distributed data in various formats and from different kinds of examinations such as Holter, Doppler and electrocardiography.


2020 ◽  
Vol 7 (2) ◽  
pp. 127-134
Author(s):  
Safah Tasya Aprilyani ◽  
Irianto Irianto ◽  
Epyk Sunarno

Penggunaan kontrol sangat diperlukan dalam pengaturan kecepatan motor DC. Dalam pengaturan kecepatan motor DC, salah satu jenis kontrol yang digunakan adalah kontrol Proportional Integral (PI). Untuk 4 jenis metode pada kontrol PI yang digunakan adalah metode Ziegler Nichole, Chien Servo 1, Chien Regulator 1 dan perhitungan secara analitik yang telah diperoleh dari data yang sudah ada.  Namun kontrol dengan PI 4 metode yang digunakan  sebagai pembanding memiliki waktu respon kecepatan saat stabil cenderung lambat baik dari nilai settling time, rise time dan steady state. Maka dari itu dilakukan komparasi antara 4 metode kontrol PI dengan penggunaan kontrol fuzzy. Dalam membandingkan antara 4 metode kontrol PI dan kontrol fuzzy terdapat beberapa parameter sebagai perbandingan yaitu maximum overshoot, steady state, rise time dan settling time. Hasil dari perbandingan tersebut adalah kontrol fuzzy dapat menghasilkan performa lebih baik jika dibandingkan dengan 4 metode pada kontrol PI. Kontrol fuzzy memiliki nilai rise time sebesar 0,015 detik, nilai settling time sebesar 0,025 detik dengan kecepatan sebesar 2900 rpm serta error steady state sebesar 3,33% tanpa adanya overshoot dan osilasi.


KURVATEK ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 21-34
Author(s):  
Untung Wahyudi ◽  
Excelsior T P ◽  
Luthfi Wahyudi

PT. Putera Bara Mitra used open mining system for mining operation, Yet the completion of study on the end wall slope stability that  undertaken by geotechnical PT. Putera Bara Mitra in Northwest Pit and the occured a failure in the low wall on the 1st June 2012 led to the need for analysis and design the overall slope at the mine site. To analyze and design the overall slope, used value of the recommended minimum safety. The value was based on company for single slope SF ≥ 1.2 and SF ≥ 1.3 for overall slope. The calculation used Bichop method with the help of software slide v 5.0. Geometry improvements was done at the low slopes that originally single wall with a 30 m bench height and a slope 70° with SF = 0.781, into 4 levels with SF = 1.305. The analysis explained the factors that affect the stability of the low wall included the mining slope geometry, unfavorable drainase system, material stockpiles and seismicity factors. It was necessary to do prevention efforts to maintain the stability of the slope included the redesign to slope geometry, handling surface and subsurface water in a way to control slopes draining groundwater, vegetation stabilization using and monitoring slope using Total Station with Prism and Crackmeter to determine the movement of cracks visible on the surface. 


Sign in / Sign up

Export Citation Format

Share Document