Solution for Heat Treatment in Quenching Process of S45C Steel Small Diameter Machine Parts Having Strong Texture

Author(s):  
Long Nguyen Nhut Phi ◽  
Ngon Dang Thien ◽  
Cuong Le Chi ◽  
Phoi Nguyen Vinh
2013 ◽  
Vol 266 ◽  
pp. 433-439 ◽  
Author(s):  
Bin Xiong ◽  
Yingke Zhou ◽  
Ryan O’Hayre ◽  
Zongping Shao

2021 ◽  
Vol 316 ◽  
pp. 233-239
Author(s):  
Viktor N. Pustovoit ◽  
Yuri V. Dolgachev ◽  
Yu.M. Dombrovskii

During heat treatment of machine parts and tools, besides the usual task of ensuring a high complex of mechanical and operational properties, there is a problem of distortion of products in the process of heat treatment and the need for editing operations (which are carried out manually and require significant labor costs). The known methods do not solve the problem of removing distortion for thin-walled parts of the ring shape completely. This paper shows the technical possibility of using the energy of a constant magnetic field for the "internal" straightening of products during heat treatment in the temperature range of super-plasticity of transformation. The use of special equipment makes it possible to eliminate virtually the distortion of thin-walled parts of the ring shape and to improve their mechanical properties.


Author(s):  
Wellington da Silva Mattos ◽  
George Edward Totten ◽  
Lauralice de Campos Franceschini Canale

This article describes the concept of uphill quenching process applied in the heat treatment of aluminum alloys. Uphill quenching is interesting since residual stress reductions of up to 80% has been reported. In addition, substantial improvements in dimensional stability have been achieved for several types of aluminum parts. Often, uphill quenching is applied after quenching and before aging during the heat treatment of aluminum alloys. The uphill quenching process consists of the immersion of the part in a cryogenic environment, and after homogenization of the temperature, the part is transferred to the hot steam chamber to obtain a temperature gradient that will maintain the mechanical properties gained with this process. The results obtained are lower residual stress and better dimensional stability. The aim of this article is to provide a review of this process and to compare it with conventional heat treatment.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022009
Author(s):  
Xiangqian Qi

Abstract The local post-weld heat treatment (PWHT) process test of 9Cr-3W-3Co small-diameter pipe welded joints was carried out using rope-type resistance heaters with different parameters, and the Brinell hardness test and microstructure observation were carried out on the welded joints after heat treatment. The results show that when the heating width was 200mm, the constant temperature was 790°C-800°C, and the constant temperature time was 2 hours, the Brinell hardness of the weld was in the range of 246HBW-265HBW, which had good performance. After tempering at 760°C-800°C, the welds all showed a clear tempered lath martensite.


2017 ◽  
Vol 1 (2) ◽  
pp. 19
Author(s):  
Sotya Anggoro

<p>Corrosion occurs in almost all metals. Even corrosion-resistant metals are corroded, but their corrosion rate is different from ordinary or non-corrosion resistant metals. This study examines the corrosion rate that occurs in stainless steel that is stainless steel. Stainless steel contains high enough chromium levels that can reduce the rate of corrosion that occurs. The metal material to be studied is the AISI 420 steel, which belongs to the Martensitic Stainless Steel class. This study examined the effect of heat treatment on corrosion rate and hardness level of AISI 420 steel. The heat treatment carried out was Quenching at 1020<sup>o</sup>C with a holding time of 60minutes with an oil cooling medium. After quenching the subsequent heat treatment is tempering with temperature variations of temperature 200<sup>o</sup>C and 300<sup>o</sup>C with a resistance time of 45 minutes and air cooling media. The results of this study showed that the base material specimens had the highest corrosion rate of 0.569 mm/y. The lowest corrosion rate is in specimens with quenching process with a value of 0.267 mm/y. The highest Vickers hardness values were found in specimens with quenching process with a value of 551 kg/mm<sup>2</sup>. The lowest hardness value is in the specimen with tempering process at 300<sup>o</sup>C with 405 kg/mm<sup>2</sup>.</p>


1972 ◽  
Vol 14 (7) ◽  
pp. 642-643
Author(s):  
N. L. Emel'yanenko ◽  
R. I. Shagabutdinov ◽  
R. M. Valeev ◽  
L. P. Smirnova
Keyword(s):  

Author(s):  
Chetan P. Nikhare ◽  
Ihab Ragai ◽  
David Loker ◽  
Shannon Sweeney ◽  
Chris Conklin ◽  
...  

Quenching is an important part of the heat treatment process for strengthening medium and high carbon steels. In the heat treatment cycle, the metal is heated to a desired temperature (above the eutectoid temperature) in the furnace and then cooled in a fluid medium such as water, brine, oil or air. Depending on the cooling rate, the mechanical and metallurgical properties of the metal can be altered in order to achieve the specific design parameters that are required by the part. The process in which the metal is cooled rapidly is termed the quenching process. Due to rapid cooling in a medium, such as water, brine, or oil, the quenching process produces an audible sound signature, as well as, acoustic emissions. In this paper, W1 tool steel is investigated through the use of a beam former that is equipped with 32 microphones. Using this device, it is demonstrated that the audible sounds that are produced when quenching depend on the heat treatment temperature and the size of the specimen.


2018 ◽  
Vol 925 ◽  
pp. 188-195 ◽  
Author(s):  
Julius Alexander Gogolin ◽  
Babette Tonn

Austempered Ductile Iron (ADI) is characterized by high tensile strength with acceptable ductility. Steel, as a large competitor to ADI, also meets the tensile and yield strength. Nevertheless, the main advantages of ADI compared to steel are the lower density (7.2 g/cm3 to 7.85 7.87 g/cm3) for weight reduction and lower manufacturing costs because of less energy consumption during the production. One of the main problems of producing ADI is the quenching process during heat treatment of thick-walled castings. The inner part of a massive casting – in contrast to the outer part – cools down more slowly, resulting in a heterogeneous microstructure with parts of pearlite and ferrite embedded in austenite before reaching the isothermal transformation temperature. Molybdenum is, besides nickel, copper and manganese, one of the possible alloying elements that postpone the transition point of ferrite and/or pearlite. To investigate the influence of molybdenum in thick-walled castings experiments with different molybdenum contents were performed. In dependence on the molybdenum content, different austenisation and ausferritisation temperatures and times are examined in order to investigate the transformation points, fraction and morphology of different phases. The mechanism of molybdenum in ADI has been investigated by means of dilatometer tests, microstructure analysis and mechanical tests.


Sign in / Sign up

Export Citation Format

Share Document