Experimental Investigation on Calculation for Unloaded Quality Factor of Single-Port Resonant Cavity

Author(s):  
Yu Zhang ◽  
Xiaoxue Wang ◽  
Wenjing Zhou ◽  
Mingshuo Han
1999 ◽  
Vol 14 (2) ◽  
pp. 500-502
Author(s):  
Seungbum Hong ◽  
Eunah Kim ◽  
Han Wook Song ◽  
Jongwan Choi ◽  
Dae-Weon Kim ◽  
...  

It has been generally accepted that the product of the unloaded quality factor and resonant frequency is the universal parameter for comparison of dielectric resonators with different size.1,2 However, it is suggested in this study that this universal parameter should be modified due to the presence of the polarons. From the frequency dependence of the unloaded quality factor, it is possible to extract the factor determined only by the phonon scattering effects, and we denoted this parameter by Qs. It was found that the Qs parameter for ZrxSnzTiyO4 (ZST) and Ba(Zn1/3Ta2/3)O3 (BZT) ceramics showed constancy in the frequency range of 2–12 GHz, which supports the idea of polaron conduction loss contribution to the dielectric loss.


2010 ◽  
Vol 21 (1) ◽  
pp. 120-126 ◽  
Author(s):  
Hassan Khalil ◽  
Stéphane Bila ◽  
Michel Aubourg ◽  
Dominique Baillargeat ◽  
Serge Verdeyme ◽  
...  

Author(s):  
A. N. Kuznetsov ◽  
S. A. Doberstein ◽  
I. V. Veremeev

This paper presents the data for frequency trimming of the single port STW resona-tors in a frequency range of 500–1000 MHz by plasma chemical etching method. The main parameters of resonators after frequency trimming are given: frequency tolerance <±100·10–6, quality factor of 8600–9500, equivalent elements needed for use of the STW resonators.


Frequenz ◽  
2019 ◽  
Vol 73 (9-10) ◽  
pp. 307-316
Author(s):  
A. Benmerkhi ◽  
M. Bouchemat ◽  
T. Bouchemat

Abstract A two dimensional photonic crystal biosensor with high quality factor, transmission and sensitivity has been theoretically investigated using two dimensional finite difference time domain method (FDTD) and plane-wave expansion (PWE) approach. The studied biosensor consisted of two waveguide couplers and one microcavity formed by removing one air pore. Following analyte injection into the sensing holes and binding, the refractive index changes inducing a possible shift in the resonant wavelength. For the optimized structure, the biosensor quality factor is found to be over 49,767 and the obtained sensitivity is of order 15.2 nm/fg. Also, we investigated this structure in case of all air holes are applied as the functionalized holes with a sensitivity was found to be approximately equal to 292.46 nm∕RIU (refractive index units). According to the resonance cavity characteristics, the demultiplexing of different wavelengths can be achieved by regulating the radius of defects “r” inside the cavity. For this, A new design with 2D PCs for two-channel demultiplexer optofluidic biosensor has been proposed. The analysis shows that the response of each channel has a different resonant cavity wavelength and the filling of analyte in the selected holes cause resonant wavelength shifting, independently.


2013 ◽  
Vol 339 ◽  
pp. 495-502
Author(s):  
Jiang Bo Qian ◽  
Heng Fan Li ◽  
Zhong He Han

The steam turbine exhaust contains large secondary droplets, and the droplets show an uneven distribution in space and time. It analyzes the change of resonant frequency and quality factor with different sizes and positions of droplets, and analyzes the influence on the steam wetness measurement. The results show that: when the size of resonant cavity is constant, the resonant frequency and quality factor are related to the size and location of water droplet. For the cylindrical cavity whose length is 40mm and radius is 30mm, when large droplet located in the ring (radius is 13.0mm) onxoyplane, it has great influence on wetness measurement, and the influence is greater with larger size of droplet.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Biyun Ma ◽  
Anne Chousseaud ◽  
Serge Toutain

We propose a new method to design miniaturized compact antennas, in which it is possible to control conjointly the radiation efficiency and the bandwidth selectivity of the antenna. And this method has been validated by the realization of prototypes based on planar resonators. The geometry of these resonators has been chosen because their unloaded quality factor can be controlled and is mainly dependent on radiation loss. In the first time, a filter with a significant potential to radiation has been realized by choosing suitable miniaturized resonators. An antenna, based on the same structure, in which the output of the filter was removed (load by air resistance) can be obtained. Modification of the quality factor of each resonator is necessary to take into account the change of the load value from the previous filter to the final structure. The position and the quality factor of the resonators are determined by a filter design concept to obtain a specific frequency response in which each resonator is a basic radiation element. Load of the antenna is ultimately a distributed load constituted by the parallel contributions of each resonators to radiation loss. In other words such an antenna can also be called radiating filter.


Sign in / Sign up

Export Citation Format

Share Document