Safety evaluation method of robot arm considering energy of contact

Author(s):  
Hideichi Nakamoto ◽  
Nobuto Matsuhira
2013 ◽  
Vol 748 ◽  
pp. 1256-1261
Author(s):  
Shou Hui He ◽  
Han Hua Zhu ◽  
Shi Dong Fan ◽  
Quan Wen

At the present time, the Dow Chemical Fire and Explosion Index (F&EI) is a kind of risk index evaluation method that is comprehensively used in evaluating potential hazard, area of exposure, expected losses in case of fire and explosion, etc. As the research object to oil depot storage tank area, this article ultimately confirms establishing appropriate pattern of process unit as well as reasonable safety precautions compensating method, in order to insure the reasonableness of evaluating result, by means of selecting process unit, confirming material factor and compensating safety precautions, using F&EI method. This can provide the basis for theoretical ground in aspect of oil depot development and safety production management.


2021 ◽  
Vol 651 (4) ◽  
pp. 042058
Author(s):  
Xuan Sun ◽  
Zhiqiang Guo ◽  
Faguo Zhong ◽  
Zhibin Wu ◽  
Penghui Yang ◽  
...  

Author(s):  
Yonghong Yang ◽  
Yu Chen ◽  
Zude Tang

Increasing traffic volume and insufficient road lanes often require municipal roads to be reconstructed and expanded. Where a road passes under a bridge, the reconstruction and expansion project will inevitably have an impact on the bridge. To evaluate the safety impact of road engineering projects on bridges, this paper evaluates the safety of the roads and ancillary facilities of highway bridges involved in municipal road engineering projects. Based on a comprehensive analysis of the safety factors of municipal roads undercrossing existing bridges, a fuzzy comprehensive analytic hierarchy process (AHP) evaluation method for the influence of road construction on the safety of existing bridges is proposed. First, AHP is used to select 11 evaluation factors. Second, the target layer, criterion layer, and index layer of evaluation factors are established, then a safety evaluation factor system is formed. The three-scale AHP model is used to determine the weight of assessment indexes. Third, through the fuzzy comprehensive AHP evaluation model, the fuzzy hierarchical comprehensive evaluation is carried out for the safety assessment index system. Finally, the fuzzy comprehensive evaluation method is applied to the engineering example of a municipal road undercrossing an existing expressway bridge. The comprehensive safety evaluation of the existing bridge reflects the practicability and feasibility of the method. It is expected that, with further development, the method will improve the decision-making process in bridge safety assessment systems.


Robotica ◽  
2014 ◽  
Vol 33 (7) ◽  
pp. 1536-1550 ◽  
Author(s):  
Jung-Jun Park ◽  
Jae-Bok Song ◽  
Sami Haddadin

SUMMARYThe safety analysis of human–robot collisions has recently drawn significant attention, as robots are increasingly used in human environments. In order to understand the potential injury a robot could cause in case of an impact, such incidents should be evaluated before designing a robot arm based on biomechanical safety criteria. In recent literature, such incidents have been investigated mostly by experimental crash-testing. However, experimental methods are expensive, and the design parameters of the robot arm are difficult to change instantly. In order to solve this issue, we propose a novel robot-human collision model consisting of a 6-degree-of-freedom mass-spring-damper system for impact analysis. Since the proposed robot-human consists of a head, neck, chest, and torso, the relative motion among these body parts can be analyzed. In this study, collision analysis of impacts to the head, neck, and chest at various collision speeds are conducted using the proposed collision model. Then, the degree of injury is estimated by using various biomechanical severity indices. The reliability of the proposed collision model is verified by comparing the obtained simulation results with experimental results from literature. Furthermore, the basic requirements for the design of safer robots are determined.


Author(s):  
Chuan Wang ◽  
Jun Gou ◽  
Yingcheng Tian ◽  
Hao Jin ◽  
Chao Yu ◽  
...  

In this paper, a safety evaluation method of subsea High Integrity Pressure Protection System (HIPPS) based on a generalized stochastic Petri net model is proposed. Different test methods were used to detect different types of failures and to analyze the reliability of HIPPS components under the influence of common cause failures and incomplete repair. The reliability curve of a diagnostic system consisting of a transmitter system and a logic system under the influence of uncertainty over time is analyzed. The safety of HIPPS with diverse test methods were quantitatively analyzed. The results show a significant improvement in the performance of the system after testing and maintenance. Both partial-stroke testing and increased partial-stroke test coverage can be used to increase the HIPPS performance compared to traditional methods. The analysis of the Partial stroke test (PST) strategy can afford a academic basis for the selection of PST frequency and Functional test (FT) interval in practical engineering.


2011 ◽  
Vol 287-290 ◽  
pp. 3036-3042 ◽  
Author(s):  
Guang Ming Yang ◽  
Wen Bin Jia

Safety evaluation index is a fundamental and key element in composing hydraulic metal structure healthy diagnostic model, however,the determination of weighting of Indexes is closely related to the reasonability and reliability of the whole evaluation result.Based on the safety level, importance and expertise of the main factors on hydraulic metal structure,we also combine integration of AHP method of nine marks and expert evaluation method to determine the weight coefficient of each index, the comprehensive health diagnosis of gates and hoists based on AHP method are first constructed in line with scientific and rational principles .And we use the model to achieve the specific project safety evaluation of hydraulic metal structures, also comparing it with the traditional comparative analysis, proving the comprehensive health diagnosis based on AHP model to be a more scientific, reasonable and reliable one.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Chunlei Feng ◽  
Dingli Zhang ◽  
Hualao Wang ◽  
Xuan Zhang

Based on the sand and pebble stratum in the Beijing area, this paper studies the interaction between deep-foundation-pit excavation for subway stations and surrounding buildings using an orthogonal test. Moreover, it considers the relative position relationship between buildings and how the foundation pit is set up as well as different design schemes for foundation pits and the surrounding buildings. Results show that the horizontal distance s between the building and foundation pit and stiffness of the building itself have a clear impact on the differential settlement δij and relative deflection Δ, and the degree of deformation of the building near the corner of the foundation pit is complex. Simultaneously, based on numerical simulation results, the deformation characteristics and degree of deformation of the building under different relative position relationships with the foundation pit are analyzed. Finally, by establishing a relationship among the comprehensive deformation index Dj, surrounding environmental safety evaluation index Sj, and scheme safety grade Lj, a multiangle safety evaluation method for buildings affected by foundation-pit construction is formed, which can provide a reference for the research and design of similar projects.


2021 ◽  
Vol 237 ◽  
pp. 02014
Author(s):  
Jing Zhang ◽  
Junguo Jia ◽  
Hui Huang ◽  
Yi Long ◽  
Taoyong Li ◽  
...  

This paper studies the correlation between charging process performance indicators and charging safety of Solar-Energy storage-Charge station, analyses the influence of environmental factors, technical factors, design factors, management factors and user factors on charging process safety of energy stations. The projection pursuit algorithm is used to evaluate the influence degree of each parameter on the safety of charging process; through the establishment of charging safety evaluation system, the safety risks of battery damage and even fire caused by excessive charging current and high battery temperature are identified. The monitoring parameters corresponding to the charging safety state are determined. According to the different battery types adopted by different vehicle models, the corresponding charging mode is determined. According to the monitoring results of key data of the core equipment in the charging process, such as charging current, charging voltage, battery temperature, etc., the charging strategies of different vehicle models and different battery types are analysed, which provides reference for the safe operation of charging process.


Sign in / Sign up

Export Citation Format

Share Document