Exact analysis of co-channel interference in a shadowed-Nakagami/shadowed-Rician channel model

Author(s):  
Li-Chun Wang ◽  
Chin-Tau Lea
Author(s):  
Tiến Hoa Nguyễn ◽  
Việt Hà Đỗ ◽  
Văn Đức Nguyễn

This paper investigates the impacts of Inter-Channel Interference (ICI) effects on a shallow underwater acoustic (UWA) orthogonal frequency-division multiplexing (OFDM) communication system. Considering both the turbulence of the water surface and the roughness of the bottom, a stochastic geometry-based channel model utilized for a wide-band transmission scenario has been exploited to derive a simulation model. Since the system bandwidth and the sub-carrier spacing is very limited in the range of a few kHz, the channel capacity of a UWA system is severely suffered by the ICI and Doppler effects. For further investigation, we construct the signal-to-noise-plus-interference ratio (SINR) based on the simulation model, then evaluate the channel capacity. Numerical results show that the various factors of a UWA-OFDM system as subcarriers, bandwidth, and OFDM symbols affects the channel capacity under the different Doppler frequencies. Those observations give hints to select the good parameters for UWA-OFDM systems.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jiqing Ni ◽  
Zesong Fei ◽  
Chengwen Xing ◽  
Di Zhao ◽  
Niwei Wang ◽  
...  

This paper considers a 2-user multiple-input single-output (MISO) interference channel with confidential messages (IFC-CM), in which the Rician channel model is assumed. The coordinated beamforming vectors at the two transmitters have the similar parameterizations as those for perfect CSI, which could be optimized jointly and achieved by agreeing on the real parameters between the two users. Our main contribution is that a quadratic relationship between the two real-valued parameters can be derived for the Rician channel to reach the ergodic secrecy rate balancing point. Simulation results present the secrecy performance over the 2-user MISO IFC-CM scenario.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7496
Author(s):  
Sahil Waqar ◽  
Matthias Pätzold

In this paper, we analyze and mitigate the cross-channel interference, which is found in multiple-input multiple-output (MIMO) radio frequency (RF) sensing systems. For a millimeter wave (mm-Wave) MIMO system, we present a geometrical three-dimensional (3D) channel model to simulate the time-variant (TV) trajectories of a moving scatterer. We collected RF data using a state-of-the-art radar known as Ancortek SDR-KIT 2400T2R4, which is a frequency-modulated continuous wave (FMCW) MIMO radar system operating in the K-band. The Ancortek radar is currently the only K-band MIMO commercial radar system that offers customized antenna configurations. It is shown that this radar system encounters the problem of interference between the various subchannels. We propose an optimal approach to mitigate the problem of cross-channel interference by inducing a propagation delay in one of the channels and apply range gating. The measurement results prove the effectiveness of the proposed approach by demonstrating a complete elimination of the interference problem. The application of the proposed solution on Ancortek’s SDR-KIT 2400T2R4 allows resolving all subchannel links in a distributed MIMO configuration. This allows using MIMO RF sensing techniques to track a moving scatterer (target) regardless of its direction of motion.


2012 ◽  
Vol E95-B (1) ◽  
pp. 254-262
Author(s):  
Yoshitoshi YAMASHITA ◽  
Eiji OKAMOTO ◽  
Yasunori IWANAMI ◽  
Yozo SHOJI ◽  
Morio TOYOSHIMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document