Reconfigurable Check Node Unit Design of Dual-Standard LDPC Decoding for 60 GHz Wireless Local Area Network

Author(s):  
Hsin-Hao Su ◽  
Tang-Syun Chen ◽  
Cheng-Hung Lin
Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2057 ◽  
Author(s):  
Wooseong Kim

Millimeter wave (mmWave) vehicle-to-vehicle (V2V) communications has received significant attention as one of the key applications in 5G technology, which is called as Giga-V2V (GiV2V). The ultra-wide band of the GiV2V allows vehicles to transfer gigabit data within a few seconds, which can achieve platooning of autonomous vehicles. The platooning process requires the rich data of a 4K dash-camera and LiDAR sensors for accurate vehicle control. To achieve this, 3GPP, a global organization of standards that provides specifications for the 5G mobile technology, is developing a new standard for GiV2V technology by extending the existing specification for device-to-device (D2D) communication. Meanwhile, in the last decade, the mmWave spectrum has been used in the wireless local area network (WLAN) for indoor devices, such as home appliances, based on the IEEE 802.11ad (also known as Wireless Gigabit Alliance (WiGig)) technology, which supports gigabit wireless connectivity of approximately 10 m distance in the 60-GHz frequency spectrum. The WiGig technology has been commercialized and used for various applications ranging from Internet access points to set-top boxes for televisions. In this study, we investigated the applicability of the WiGig technology to the GiV2V communications through experiments on a real vehicular testbed. To achieve this, we built a testbed using commercial off-the-shelf WiGig devices and performed experiments to measure inter-vehicle connectivity on a campus and on city roads with different permitted vehicle speeds. The experimental results demonstrate that disconnections occurred frequently due to the short radio range and the connectivity varied with the vehicle speed. However, the instantaneous throughput was sufficient to exchange large data between moving vehicles in different road environments.


2015 ◽  
Vol 9 (2) ◽  
pp. 219-226 ◽  
Author(s):  
Bo Gao ◽  
Depeng Jin ◽  
Lieguang Zeng ◽  
Zhenyu Xiao ◽  
Li Su

Author(s):  
Chaithra. H. U ◽  
Vani H.R

Now a days in Wireless Local Area Networks (WLANs) used in different fields because its well-suited simulator and higher flexibility. The concept of WLAN  with  advanced 5th Generation technologies, related to a Internet-of-Thing (IOT). In this project, representing the Network Simulator (NS-2) used linked-level simulators for Wireless Local Area Networks and still utilized IEEE 802.11g/n/ac with advanced IEEE 802.11ah/af technology. Realization of the whole Wireless Local Area Networking linked-level simulators inspired by the recognized Vienna Long Term Evolution- simulators. As a outcome, this is achieved to link together that simulator to detailed performances of Wireless Local Area Networking with Long Term Evolution, operated in the similar RF bands. From the advanced 5th Generation support cellular networking, such explore is main because different coexistences scenario can arise linking wireless communicating system to the ISM and UHF bands.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


2018 ◽  
Author(s):  
Kiramat

IEEE 802.11 is a set of media access control (MAC) and physical layer (PHY) specifications for implementing wireless local area network (WLAN) computer communications. Maintained by the Institute of Electrical and Electronics Engineers (IEEE) LAN/MAN Standards Committee (IEEE 802). This document highlights the main features of IEEE 802.11n variant such as MIMO, frame aggregation and beamforming along with the problems in this variant and their solutions


2020 ◽  
Vol 1550 ◽  
pp. 032078
Author(s):  
Kaigang Fan ◽  
Xin Chen ◽  
Biao Zhao ◽  
Jiale Wang ◽  
Wenbin Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document