Design and manufacturing of resonance frequency detector for actuating resonant sensors

Author(s):  
Mohammad Reza Nayeri ◽  
Yaser Shirmohamadi ◽  
Hamid Khaloozadeh
Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Lei Li ◽  
Hanbiao Liu ◽  
Mingyu Shao ◽  
Chicheng Ma

Frequency stabilization can overcome the dependence of resonance frequency on amplitude in nonlinear microelectromechanical systems, which is potentially useful in nonlinear mass sensor. In this paper, the physical conditions for frequency stabilization are presented theoretically, and the influence of system parameters on frequency stabilization is analyzed. Firstly, a nonlinear mechanically coupled resonant structure is designed with a nonlinear force composed of a pair of bias voltages and an alternating current (AC) harmonic load. We study coupled-mode vibration and derive the expression of resonance frequency in the nonlinear regime by utilizing perturbation and bifurcation analysis. It is found that improving the quality factor of the system is crucial to realize the frequency stabilization. Typically, stochastic dynamic equation is introduced to prove that the coupled resonant structure can overcome the influence of voltage fluctuation on resonance frequency and improve the robustness of the sensor. In addition, a novel parameter identification method is proposed by using frequency stabilization and bifurcation jumping, which effectively avoids resonance frequency shifts caused by driving voltage. Finally, numerical studies are introduced to verify the mass detection method. The results in this paper can be used to guide the design of a nonlinear sensor.


2012 ◽  
Vol 465 ◽  
pp. 14-22 ◽  
Author(s):  
Jian Qiang Han ◽  
Xiao Fei Wang ◽  
Ri Sheng Feng

Microbridge resonators have been widely used as sensing elements to measure various parameters, such as pressure, acceleration, biochemical adsorption and reactions, mass-flow, infrared ray et al. But no model has been built to calculate quantitatively the shift of resonance frequency due to heat convection, incident infrared ray, excited thermal power drift and ambient air pressure. In this paper, a theoretical analysis is given to calculate the resonance frequency shift due to the thermal power (static heating power and dynamic heating power) fluctuation and the added mass of the ambient air. The model can be used to design resonant sensors based on microbridge resonator, such as resonant mass-flow sensors, resonant IR detectors, resonant biochemical sensors and resonant vacuum gauge, et al.


2020 ◽  
Vol 14 (4) ◽  
pp. 7396-7404
Author(s):  
Abdul Malek Abdul Wahab ◽  
Emiliano Rustighi ◽  
Zainudin A.

Various complex shapes of dielectric electro-active polymer (DEAP) actuator have been promoted for several types of applications. In this study, the actuation and mechanical dynamics characteristics of a new core free flat DEAP soft actuator were investigated. This actuator was developed by Danfoss PolyPower. DC voltage of up to 2000 V was supplied for identifying the actuation characteristics of the actuator and compare with the existing formula. The operational frequency of the actuator was determined by dynamic testing. Then, the soft actuator has been modelled as a uniform bar rigidly fixed at one end and attached to mass at another end. Results from the theoretical model were compared with the experimental results. It was found that the deformation of the current actuator was quadratic proportional to the voltage supplied. It was found that experimental results and theory were not in good agreement for low and high voltage with average percentage error are 104% and 20.7%, respectively. The resonance frequency of the actuator was near 14 Hz. Mass of load added, inhomogeneity and initial tension significantly affected the resonance frequency of the soft actuator. The experimental results were consistent with the theoretical model at zero load. However, due to inhomogeneity, the frequency response function’s plot underlines a poor prediction where the theoretical calculation was far from experimental results as values of load increasing with the average percentage error 15.7%. Hence, it shows the proposed analytical procedure not suitable to provide accurate natural frequency for the DEAP soft actuator.


2020 ◽  
Vol 46 (3) ◽  
pp. 182-189 ◽  
Author(s):  
Davide Farronato ◽  
Mattia Manfredini ◽  
Michele Stocchero ◽  
Mattia Caccia ◽  
Lorenzo Azzi ◽  
...  

The aim of this study was to evaluate the influence of bone quality, drilling technique, implant diameter, and implant length on insertion torque (IT) and resonance frequency analysis (RFA) of a prototype-tapered implant with knife-edge threads. The investigators hypothesized that IT would be affected by variations in bone quality and drilling protocol, whereas RFA would be less influenced by such variables. The investigators implemented an in vitro experiment in which a prototype implant was inserted with different testing conditions into rigid polyurethane foam blocks. The independent variables were: bone quality, drilling protocol, implant diameter, and implant length. Group A implants were inserted with a conventional drilling protocol, whereas Group B implants were inserted with an undersized drilling protocol. Values of IT and RFA were measured at implant installation. IT and RFA values were significantly correlated (Pearson correlation coefficient: 0.54). A multivariable analysis showed a strong model. Higher IT values were associated with drilling protocol B vs A (mean difference: 71.7 Ncm), implant length (3.6 Ncm increase per mm in length), and substrate density (0.199 Ncm increase per mg/cm3 in density). Higher RFA values were associated with drilling protocol B vs A (mean difference: 3.9), implant length (1.0 increase per mm in length), and substrate density (0.032 increase per mg/cm3 in density). Implant diameter was not associated with RFA or IT. Within the limitations of an in vitro study, the results of this study suggest that the studied implant can achieve good level of primary stability in terms of IT and RFA. A strong correlation was found between values of IT and RFA. Both parameters are influenced by the drilling protocol, implant length, and substrate density. Further studies are required to investigate the clinical response in primary stability and marginal bone response.


2013 ◽  
Vol 72 (19) ◽  
pp. 1739-1746
Author(s):  
R. I. Belous ◽  
S. P. Martynyuk ◽  
A. P. Motornenko ◽  
I. G. Skuratovskiy ◽  
O. I. Khazov

2014 ◽  
Vol 1 (1) ◽  
pp. 365-368
Author(s):  
Ionela Magdalena Rotaru ◽  
Sorin Borza

Abstractthe paper continues the research started in the paper “Conception and fabrication using knowledge management principles”. The theoretical guidelines found in the mentioned paper crystallises at a practical level in an original product – a software solution. The proposed solution has as a central element notion concerning the design and manufacturing of straight axes in the automotive industry. The application field for the proposed example regards the educational area; the software guides the user by theoretical concepts, examples, problems through practical aspects concerning the design and manufacturing of a part belonging to the axes family specific to the automotive industry. The software was developed using the Access work environment.


Sign in / Sign up

Export Citation Format

Share Document