A CSMA based intra cluster communication technique for saving cluster head energy

Author(s):  
Amit Karmaker ◽  
Md Mahedee Hasan
Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3719 ◽  
Author(s):  
Ala’ Khalifeh ◽  
Husam Abid ◽  
Khalid A. Darabkh

Wireless sensor networks (WSNs) are increasingly gaining popularity, especially with the advent of many artificial intelligence (AI) driven applications and expert systems. Such applications require specific relevant sensors’ data to be stored, processed, analyzed, and input to the expert systems. Obviously, sensor nodes (SNs) have limited energy and computation capabilities and are normally deployed remotely over an area of interest (AoI). Therefore, proposing efficient protocols for sensing and sending data is paramount to WSNs operation. Nodes’ clustering is a widely used technique in WSNs, where the sensor nodes are grouped into clusters. Each cluster has a cluster head (CH) that is used to gather captured data of sensor nodes and forward it to a remote sink node for further processing and decision-making. In this paper, an optimization algorithm for adjusting the CH location with respect to the nodes within the cluster is proposed. This algorithm aims at finding the optimal CH location that minimizes the total sum of the nodes’ path-loss incurred within the intra-cluster communication links between the sensor nodes and the CH. Once the optimal CH is identified, the CH moves to the optimal location. This suggestion of CH re-positioning is frequently repeated for new geometric position. Excitingly, the algorithm is extended to consider the inter-cluster communication between CH nodes belonging to different clusters and distributed over a spiral trajectory. These CH nodes form a multi-hop communication link that convey the captured data of the clusters’ nodes to the sink destination node. The performance of the proposed CH positioning algorithm for the single and multi-clusters has been evaluated and compared with other related studies. The results showed the effectiveness of the proposed CH positioning algorithm.


Author(s):  
Proshikshya Mukherjee

Wireless sensor networks act as an important role in the wireless communication area because of its properties, its intelligence, cheaper costs, and its smaller size. Multiple nodes are required for coperative communication, the low energy adaptive clustering hierarchy and LEACH-Vector Quantization are used for cluster and active cluster headformation. Further, Dijkstra Algorithm is used to find the shortest path between the active CHs and high-energy utilization, respectively. The main issue of inter-cluster communication is carried out in earlier work using LEACH and LEACH-V protocols. The chapter illustrates the LEACH-Vector Quantization Dijkstra protocol for shortest path active CH communication in a cooperative communication network. In the application point of view, LEACH-VD performs the lowest energy path. LEACH-V provides the intra-cluster communication between the cluster head, and using Dijkstra Algorithm, the minimum distance is calculated connecting the active cluster heads, which creates the shortest path results using an energy-efficient technique.


2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Author(s):  
Palky Mehta ◽  
H. L. Sharma

In the current scenario of Wireless Sensor Network (WSN), power consumption is the major issue associated with nodes in WSN. LEACH technique plays a vital role of clustering in WSN and reduces the energy usage effectively. But LEACH has its own limitation in order to search cluster head nodes which are randomly distributed over the network. In this paper, ERA-NFL- BA algorithm is being proposed for selects the cluster heads in WSN. This algorithm help in selection of cluster heads can freely transform from global search to local search. At the end, a comparison has been done with earlier researcher using protocol ERA-NFL, which clearly shown that proposed Algorithm is best suited and from comparison results that ERA-NFL-BA has given better performance.


Author(s):  
A. Rethina Palin ◽  
I. Jeena Jacob

Wireless Mesh Network (MWN) could be divided into proactive routing, reactive routing and hybrid routing, which must satisfy the requirements related to scalability, reliability, flexibility, throughput, load balancing, congestion control and efficiency. DMN (Directional Mesh Network) become more adaptive to the local environments and robust to spectrum changes. The existing computing units in the mesh network systems are Fog nodes, the DMN architecture is more economic and efficient since it doesn’t require architecture- level changes from existing systems. The cluster head (CH) manages a group of nodes such that the network has the hierarchical structure for the channel access, routing and bandwidth allocation. The feature extraction and situational awareness is conducted, each Fog node sends the information regarding the current situation to the cluster head in the contextual format. A Markov logic network (MLN) based reasoning engine is utilized for the final routing table updating regarding the system uncertainty and complexity.


2016 ◽  
Vol 13 (1) ◽  
pp. 116
Author(s):  
Wan Isni Sofiah Wan Din ◽  
Saadiah Yahya ◽  
Mohd Nasir Taib ◽  
Ahmad Ihsan Mohd Yassin ◽  
Razulaimi Razali

Clustering in Wireless Sensor Network (WSN) is one of the methods to minimize the energy usage of sensor network. The design of sensor network itself can prolong the lifetime of network. Cluster head in each cluster is an important part in clustering to ensure the lifetime of each sensor node can be preserved as it acts as an intermediary node between the other sensors. Sensor nodes have the limitation of its battery where the battery is impossible to be replaced once it has been deployed. Thus, this paper presents an improvement of clustering algorithm for two-tier network as we named it as Multi-Tier Algorithm (MAP). For the cluster head selection, fuzzy logic approach has been used which it can minimize the energy usage of sensor nodes hence maximize the network lifetime. MAP clustering approach used in this paper covers the average of 100Mx100M network and involves three parameters that worked together in order to select the cluster head which are residual energy, communication cost and centrality. It is concluded that, MAP dominant the lifetime of WSN compared to LEACH and SEP protocols. For the future work, the stability of this algorithm can be verified in detailed via different data and energy. 


Sign in / Sign up

Export Citation Format

Share Document