Optimal Fault Tolerance Using Intuitionistic Fuzzy and Selection of Cluster Head in MANET

2019 ◽  
Vol 7 (8) ◽  
pp. 144-150
Author(s):  
S.P. Swornambiga
Author(s):  
Palky Mehta ◽  
H. L. Sharma

In the current scenario of Wireless Sensor Network (WSN), power consumption is the major issue associated with nodes in WSN. LEACH technique plays a vital role of clustering in WSN and reduces the energy usage effectively. But LEACH has its own limitation in order to search cluster head nodes which are randomly distributed over the network. In this paper, ERA-NFL- BA algorithm is being proposed for selects the cluster heads in WSN. This algorithm help in selection of cluster heads can freely transform from global search to local search. At the end, a comparison has been done with earlier researcher using protocol ERA-NFL, which clearly shown that proposed Algorithm is best suited and from comparison results that ERA-NFL-BA has given better performance.


Fault Tolerant Reliable Protocol (FTRP) is proposed as a novel routing protocol designed for Wireless Sensor Networks (WSNs). FTRP offers fault tolerance reliability for packet exchange and support for dynamic network changes. The key concept used is the use of node logical clustering. The protocol delegates the routing ownership to the cluster heads where fault tolerance functionality is implemented. FTRP utilizes cluster head nodes along with cluster head groups to store packets in transient. In addition, FTRP utilizes broadcast, which reduces the message overhead as compared to classical flooding mechanisms. FTRP manipulates Time to Live values for the various routing messages to control message broadcast. FTRP utilizes jitter in messages transmission to reduce the effect of synchronized node states, which in turn reduces collisions. FTRP performance has been extensively through simulations against Ad-hoc On-demand Distance Vector (AODV) and Optimized Link State (OLSR) routing protocols. Packet Delivery Ratio (PDR), Aggregate Throughput and End-to-End delay (E-2-E) had been used as performance metrics. In terms of PDR and aggregate throughput, it is found that FTRP is an excellent performer in all mobility scenarios whether the network is sparse or dense. In stationary scenarios, FTRP performed well in sparse network; however, in dense network FTRP’s performance had degraded yet in an acceptable range. This degradation is attributed to synchronized nodes states. Reliably delivering a message comes to a cost, as in terms of E-2-E. results show that FTRP is considered a good performer in all mobility scenarios where the network is sparse. In sparse stationary scenario, FTRP is considered good performer, however in dense stationary scenarios FTRP’s E-2-E is not acceptable. There are times when receiving a network message is more important than other costs such as energy or delay. That makes FTRP suitable for wide range of WSNs applications, such as military applications by monitoring soldiers’ biological data and supplies while in battlefield and battle damage assessment. FTRP can also be used in health applications in addition to wide range of geo-fencing, environmental monitoring, resource monitoring, production lines monitoring, agriculture and animals tracking. FTRP should be avoided in dense stationary deployments such as, but not limited to, scenarios where high application response is critical and life endangering such as biohazards detection or within intensive care units.


2014 ◽  
Vol 11 (2) ◽  
pp. 839-857 ◽  
Author(s):  
Zeng Shouzhen ◽  
Wang Qifeng ◽  
José Merigó ◽  
Pan Tiejun

We present the induced intuitionistic fuzzy ordered weighted averaging-weighted average (I-IFOWAWA) operator. It is a new aggregation operator that uses the intuitionistic fuzzy weighted average (IFWA) and the induced intuitionistic fuzzy ordered weighted averaging (I-IFOWA) operator in the same formulation. We study some of its main properties and we have seen that it has a lot of particular cases such as the IFWA and the intuitionistic fuzzy ordered weighted averaging (IFOWA) operator. We also study its applicability in a decision-making problem concerning strategic selection of investments. We see that depending on the particular type of I-IFOWAWA operator used, the results may lead to different decisions.


2020 ◽  
Vol 8 (5) ◽  
pp. 2040-2044

The cloud technologies are gaining boom in the field of information technology. But on the same side cloud computing sometimes results in failures. These failures demand more reliable frameworks with high availability of computers acting as nodes. The request made by the user is replicated and sent to various VMs. If one of the VMs fail, the other can respond to increase the reliability. A lot of research has been done and being carried out to suggest various schemes for fault tolerance thus increasing the reliability. Earlier schemes focus on only one way of dealing with faults but the scheme proposed by the the author in this paper presents an adaptive scheme that deals with the issues related to fault tolerance in various cloud infrastructure. The projected scheme uses adaptive behavior during the selection of replication and fine-grained checkpointing methods for attaining a reliable cloud infrastructure that can handle different client requirements. In addition to it the algorithm also determines the best suited fault tolerance method for every designated virtual node. Zheng, Zhou,. Lyu and I. King (2012).


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhijit Majumdar ◽  
Jeevaraj S ◽  
Mathiyazhagan Kaliyan ◽  
Rohit Agrawal

PurposeSelection of resilient suppliers has attracted the attention of researchers in the past one decade. The devastating effect of COVID-19 in emerging economies has provided great impetus to the selection of resilient suppliers. Under volatile and uncertain business scenarios, supplier selection is often done under imprecise and incomplete information, making the traditional decision-making methods ineffective. The purpose of this paper is to demonstrate the application of a fuzzy decision-making method for resilient supplier selection.Design/methodology/approachA group of three decision makers was considered for evaluating various alternatives (suppliers) based on their performance under different primary, sustainability and resilience criteria. Experts' opinion about each criterion and alternative was captured in linguistic terms and was modelled using fuzzy numbers. Then, an algorithm for solving resilient supplier selection problem based on the trapezoidal intuitionistic fuzzy technique for order preference by similarity to ideal solution (TrIFTOPSIS) was introduced and demonstrated through a case study.FindingsA closeness coefficient was used to rank the suppliers based on their distances from intuitionistic fuzzy positive-ideal solution and intuitionistic fuzzy negative-ideal solution. Finally, the proposed fuzzy decision making model was applied to a real problem of supplier selection in the clothing industry.Originality/valueThe presented TrIFTOPSIS model provides an effective route to prioritise and select resilient suppliers under imprecise and incomplete information. This is the first application of intuitionistic fuzzy multi-criteria decision-making for resilient supplier selection.


Author(s):  
M. B. Shyjith ◽  
C. P. Maheswaran ◽  
V. K. Reshma

WSN is comprised of sensor nodes that sense the data for various applications. The nodes are employed for transmitting sensed data to BS through intermediate nodes or the cluster heads in multi-hop environment. Erroneous selection of CHs may lead to large energy consumption and thereby degrades system performance. Hence, an effective technique was developed by proposing Rider-ASO for secure-aware multipath routing in the WSN. The proposed routing protocol offers security to the network concerning various trust factors. Initially, cluster head selection is done using RCSO. Then, the trust values of the cluster heads that are selected is computed to ensure security while routing. For the multipath routing, proposed Rider-ASO is developed by combining ASO and ROA. Thus, the proposed algorithm finds multiple secured paths from the source into destination based on selected CHs. The developed Rider-ASO outperformed other methods with minimal delay of 0.009 sec, maximal average residual energy 0.5494 J, maximal PDR of 97.82%, maximal throughput rate of 96.07%, respectively.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 574 ◽  
Author(s):  
Zengxian Li ◽  
Hui Gao ◽  
Guiwu Wei

In this paper, we extended the Hamy mean (HM) operator, the Dombi Hamy mean (DHM) operator, the Dombi dual Hamy mean (DDHM), with the intuitionistic fuzzy numbers (IFNs) to propose the intuitionistic fuzzy Dombi Hamy mean (IFDHM) operator, intuitionistic fuzzy weighted Dombi Hamy mean (IFWDHM) operator, intuitionistic fuzzy Dombi dual Hamy mean (IFDDHM) operator, and intuitionistic fuzzy weighted Dombi dual Hamy mean (IFWDDHM) operator. Following this, the multiple attribute group decision-making (MAGDM) methods are proposed with these operators. To conclude, we utilized an applicable example for the selection of a car supplier to prove the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document