UpKit: An Open-Source, Portable, and Lightweight Update Framework for Constrained IoT Devices

Author(s):  
Antonio Langiu ◽  
Carlo Alberto Boano ◽  
Markus Schuss ◽  
Kay Romer
Keyword(s):  
Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 431
Author(s):  
Martina Troscia ◽  
Andrea Sgambelluri ◽  
Francesco Paolucci ◽  
Piero Castoldi ◽  
Paolo Pagano ◽  
...  

Software Defined Networking represents a mature technology for the control of optical networks, though all open controller implementations present in the literature still lack the adequate level of maturity and completeness to be considered for (pre)-production network deployments. This work aims at experimenting on, assessing and discussing the use of the OneM2M open-source platform in the context of optical networks. Network elements and devices are implemented as IoT devices, and the control application is built on top of an OneM2M-compliant server. The work concretely addresses the scalability and flexibility performances of the proposed solution, accounting for the expected growth of optical networks. The two experiment scenarios show promising results and confirm that the OneM2M platform can be adopted in such a context, paving the way to other researches and studies.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 50 ◽  
Author(s):  
Óscar Blanco-Novoa ◽  
Paula Fraga-Lamas ◽  
Miguel Vilar-Montesinos ◽  
Tiago Fernández-Caramés

The latest Augmented Reality (AR) and Mixed Reality (MR) systems are able to provide innovative methods for user interaction, but their full potential can only be achieved when they are able to exchange bidirectional information with the physical world that surround them, including the objects that belong to the Internet of Things (IoT). The problem is that elements like AR display devices or IoT sensors/actuators often use heterogeneous technologies that make it difficult to intercommunicate them in an easy way, thus requiring a high degree of specialization to carry out such a task. This paper presents an open-source framework that eases the integration of AR and IoT devices as well as the transfer of information among them, both in real time and in a dynamic way. The proposed framework makes use of widely used standard protocols and open-source tools like MQTT, HTTPS or Node-RED. In order to illustrate the operation of the framework, this paper presents the implementation of a practical home automation example: an AR/MR application for energy consumption monitoring that allows for using a pair of Microsoft HoloLens smart glasses to interact with smart power outlets.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3025
Author(s):  
Faisal Hussain ◽  
Syed Ghazanfar Abbas ◽  
Ghalib A. Shah ◽  
Ivan Miguel Pires ◽  
Ubaid U. Fayyaz ◽  
...  

The Internet of things (IoT) has emerged as a topic of intense interest among the research and industrial community as it has had a revolutionary impact on human life. The rapid growth of IoT technology has revolutionized human life by inaugurating the concept of smart devices, smart healthcare, smart industry, smart city, smart grid, among others. IoT devices’ security has become a serious concern nowadays, especially for the healthcare domain, where recent attacks exposed damaging IoT security vulnerabilities. Traditional network security solutions are well established. However, due to the resource constraint property of IoT devices and the distinct behavior of IoT protocols, the existing security mechanisms cannot be deployed directly for securing the IoT devices and network from the cyber-attacks. To enhance the level of security for IoT, researchers need IoT-specific tools, methods, and datasets. To address the mentioned problem, we provide a framework for developing IoT context-aware security solutions to detect malicious traffic in IoT use cases. The proposed framework consists of a newly created, open-source IoT data generator tool named IoT-Flock. The IoT-Flock tool allows researchers to develop an IoT use-case comprised of both normal and malicious IoT devices and generate traffic. Additionally, the proposed framework provides an open-source utility for converting the captured traffic generated by IoT-Flock into an IoT dataset. Using the proposed framework in this research, we first generated an IoT healthcare dataset which comprises both normal and IoT attack traffic. Afterwards, we applied different machine learning techniques to the generated dataset to detect the cyber-attacks and protect the healthcare system from cyber-attacks. The proposed framework will help in developing the context-aware IoT security solutions, especially for a sensitive use case like IoT healthcare environment.


2018 ◽  
Vol 9 (1) ◽  
pp. 83-86
Author(s):  
Katalin Ferencz

Abstract The wide spread of IoT devices makes possible the collection of enormous amounts of sensor data. Traditional SQL (structured query language) database management systems are not the most appropriate for storing this type of data. For this task, distributed database management systems are the most adequate. Apache Cassandra is an open source, distributed database server software that stores large amounts of data on low-coast servers, providing high availability. The Cassandra uses the gossip protocol to exchange information between the distributed servers. The query language used is the CQL (Cassandra Query Language). In this paper we present an alternative solution to traditional SQL-based database management systems - the so called NoSQL type database management systems, summarize the main types of these systems and provide a detailed description of the Apache Cassandra open source distributed database server installation, configuration and operation.


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3328 ◽  
Author(s):  
Óscar Blanco-Novoa ◽  
Paula Fraga-Lamas ◽  
Miguel A. Vilar-Montesinos ◽  
Tiago M. Fernández-Caramés

Augmented Reality (AR) and Mixed Reality (MR) devices have evolved significantly in the last years, providing immersive AR/MR experiences that allow users to interact with virtual elements placed on the real-world. However, to make AR/MR devices reach their full potential, it is necessary to go further and let them collaborate with the physical elements around them, including the objects that belong to the Internet of Things (IoT). Unfortunately, AR/MR and IoT devices usually make use of heterogeneous technologies that complicate their intercommunication. Moreover, the implementation of the intercommunication mechanisms requires involving specialized developers with have experience on the necessary technologies. To tackle such problems, this article proposes the use of a framework that makes it easy to integrate AR/MR and IoT devices, allowing them to communicate dynamically and in real time. The presented AR/MR-IoT framework makes use of standard and open-source protocols and tools like MQTT, HTTPS or Node-RED. After detailing the inner workings of the framework, it is illustrated its potential through a practical use case: a smart power socket that can be monitored and controlled through Microsoft HoloLens AR/MR glasses. The performance of such a practical use case is evaluated and it is demonstrated that the proposed framework, under normal operation conditions, enables to respond in less than 100 ms to interaction and data update requests.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
José L. Romero-Gázquez ◽  
M. Victoria Bueno-Delgado

The Industry 4.0 (I4.0) adoption comprises the change of traditional factories intosmartusing the ICTs. The goal is to monitor processes, objects, machinery, and workers in order to have real-time knowledge about what is going on in the factory and for achieving an efficient data collection, management, and decision-making that help improve the businesses in terms of product quality, productivity, and efficiency. Internet of Things (IoT) will have an important role in the I4.0 adoption because future smart factories are expected to rely on IoT infrastructures composed of constellations of hundreds or thousands of sensor devices spread all over the industrial facilities. However, some problems could arise in the massive IoT deployment in a medium-high factory: thousands of IoT devices to cope from different technologies and vendors could mean dozens of vendor tools and user interfaces to manage them. Moreover, the heterogeneity of IoT devices could entail different communication protocols, languages, and data formats, which can result in lack of interoperability. On the other hand, conventional IT networks and industrial machinery are expected to be managed together with the IoT infrastructure, maybe using a tool or a set of tools, fororchestratingthe whole smart factory. This work meets these challenges presenting an open-source software architecture solution based on OpenDaylight (ODL), a Software Defined Network (SDN) controller, for orchestrating an industrial IoT scenario. This work is addressed by shedding light on critical aspects from the SDN controller architectural choices, to specific IoT interfaces and the difficulties for covering the wide range of communication protocols, popular in industrial contexts. Such a global view of the process gives light to practical difficulties appearing in introducing SDN in industrial contexts, providing an open-source architecture solution that guarantees devices and networks interoperability and scalability, breaking the vendor lock-in barriers and providing a vendor-agnostic solution for orchestrating all actor of an I4.0 smart factory.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 167
Author(s):  
Ivan Kholod ◽  
Evgeny Yanaki ◽  
Dmitry Fomichev ◽  
Evgeniy Shalugin ◽  
Evgenia Novikova ◽  
...  

The rapid development of Internet of Things (IoT) systems has led to the problem of managing and analyzing the large volumes of data that they generate. Traditional approaches that involve collection of data from IoT devices into one centralized repository for further analysis are not always applicable due to the large amount of collected data, the use of communication channels with limited bandwidth, security and privacy requirements, etc. Federated learning (FL) is an emerging approach that allows one to analyze data directly on data sources and to federate the results of each analysis to yield a result as traditional centralized data processing. FL is being actively developed, and currently, there are several open-source frameworks that implement it. This article presents a comparative review and analysis of the existing open-source FL frameworks, including their applicability in IoT systems. The authors evaluated the following features of the frameworks: ease of use and deployment, development, analysis capabilities, accuracy, and performance. Three different data sets were used in the experiments—two signal data sets of different volumes and one image data set. To model low-power IoT devices, computing nodes with small resources were defined in the testbed. The research results revealed FL frameworks that could be applied in the IoT systems now, but with certain restrictions on their use.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1689
Author(s):  
Zakaria Kasmi ◽  
Abdelmoumen Norrdine ◽  
Jochen Schiller ◽  
Mesut Güneş ◽  
Christoph Motzko

We developped an open source library called RcdMathLib for solving multivariate linear and nonlinear systems. RcdMathLib supports on-the-fly computing on low-cost and resource-constrained devices, e.g., microcontrollers. The decentralized processing is a step towards ubiquitous computing enabling the implementation of Internet of Things (IoT) applications. RcdMathLib is modular- and layer-based, whereby different modules allow for algebraic operations such as vector and matrix operations or decompositions. RcdMathLib also comprises a utilities-module providing sorting and filtering algorithms as well as methods generating random variables. It enables solving linear and nonlinear equations based on efficient decomposition approaches such as the Singular Value Decomposition (SVD) algorithm. The open source library also provides optimization methods such as Gauss–Newton and Levenberg–Marquardt algorithms for solving problems of regression smoothing and curve fitting. Furthermore, a positioning module permits computing positions of IoT devices using algorithms for instance trilateration. This module also enables the optimization of the position by performing a method to reduce multipath errors on the mobile device. The library is implemented and tested on resource-limited IoT as well as on full-fledged operating systems. The open source software library is hosted on a GitLab repository.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4567 ◽  
Author(s):  
Jaeseok Yun ◽  
Il-Yeup Ahn ◽  
JaeSeung Song ◽  
Jaeho Kim

In this paper, we present an implementation work of sensing and actuation capabilities for IoT devices using the oneM2M standard-based platforms. We mainly focus on the heterogeneity of the hardware interfaces employed in IoT devices. For IoT devices (i.e., Internet-connected embedded systems) to perform sensing and actuation capabilities in a standardized manner, a well-designed middleware solution will be a crucial part of IoT platform. Accordingly, we propose an oneM2M standard-based IoT platform (called nCube) incorporated with a set of tiny middleware programs (called TAS) responsible for translating sensing values and actuation commands into oneM2M-defined resources accessible in Web-based applications. All the source codes for the oneM2M middleware platform and smartphone application are available for free in the GitHub repositories. The full details on the implementation work and open-source contributions are described.


Sign in / Sign up

Export Citation Format

Share Document