Implementation of Second Conductive Filler to Improve the Properties of Hybrid Graphite Composites

Author(s):  
Hendra Suherman ◽  
Muhhamad Fauzan ◽  
Yovial Mahyoedin ◽  
Maria Ulfah ◽  
Irmayani Irmayani
2017 ◽  
Vol 44 (1) ◽  
pp. 49-52 ◽  
Author(s):  
M.F. Galikhanov ◽  
R.Ya. Deberdeev ◽  
E.N. Mochalova

Coronoelectrets based on composites of polystyrene with a conductive filler – graphite – were studied. It was shown that the introduction of up to 8 vol% filler into the polymer raises the level and the time and thermal stability of its electret properties. By controlling the ratio of the components in the composite, it is possible to create electrets with prescribed properties.


2020 ◽  
pp. 096739112097811
Author(s):  
Munjula Siva Kumar ◽  
Santosh Kumar ◽  
Krushna Gouda ◽  
Sumit Bhowmik

The polymer composite material’s thermomechanical properties with fiber as reinforcement material have been widely studied in the last few decades. However, these fiber-based polymer composites exhibit problems such as fiber orientation, delamination, fiber defect along the length and bonding are the matter of serious concern in order to improve the thermomechanical properties and obtain isotropic material behavior. In the present investigation filler-based composite material is developed using natural hemp and high thermal conductive silver nanoparticles (SNP) and combination of dual fillers in neat epoxy polymer to investigate the synergetic influence. Among various organic natural fillers hemp filler depicts good crystallinity characteristics, so selected as a biocompatible filler along with SNP conductive filler. For enhancing their thermal conductivity and mechanical properties, hybridization of hemp filler along with silver nanoparticles are conducted. The composites samples are prepared with three different combinations such as sole SNP, sole hemp and hybrid (SNP and hemp) are prepared to understand their solo and hybrid combination. From results it is examined that, chemical treated hemp filler has to maximized its relative properties and showed, 40% weight % of silver nanoparticles composites have highest thermal conductivity 1.00 W/mK followed with hemp filler 0.55 W/mK and hybrid 0.76 W/mK composites at 7.5% of weight fraction and 47.5% of weight fraction respectively. The highest tensile strength is obtained for SNP composite 32.03 MPa and highest young’s modulus is obtained for hybrid composites. Dynamic mechanical analysis is conducted to find their respective storage modulus and glass transition temperature and that, the recorded maximum for SNP composites with 3.23 GPa and 90°C respectively. Scanning electron microscopy examinations clearly illustrated that formation of thermal conductivity chain is significant with nano and micro fillers incorporation.


Author(s):  
Christoph Winkler ◽  
Stefan Haase ◽  
Ulrich Schwarz ◽  
Markus Jahreis

AbstractSeveral laboratory studies and experiments have demonstrated the usability of polymer films filled with electrically conductive filler as piezoresistive material. Applied to adhesives, the glue lines of wood products can achieve multifunctional—thus bonding and piezoresistive/strain sensing—properties. Based on critical load areas in timber constructions, upscaled test setups for simplified load situations were designed, especially with regard to a stress-free electrical contact. In a second step, another upscaling was done to small glulam beams. Based on an experimental test sequence, the piezoresistive reactions as well as the behaviour until failure were analysed. The results show in all cases that a piezoresistive reaction of the multifunctionally bonded specimens was measurable, giving a difference in the extent of relative change. Additionally, measured phenomena like inverse piezoresistive reactions, electrical resistance drift and the absence of a piezoresistive reaction were discussed, based on additional strain analysis by digital image correlation. A model of macroscopic and microscopic strains influencing the piezoresistive reaction of the electrically conductive bond line in wood was used to explain all experimental results. Finally, a first scale-up of piezoresistive bond lines from laboratory samples to glulam beams was possible and successful.


2021 ◽  
Vol 6 (6) ◽  
pp. 1288-1296
Author(s):  
Hongming Wie ◽  
Jianpeng Zou ◽  
Xiaoya Li ◽  
Cong Xiao

2021 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Johannes Mersch ◽  
Henriette Probst ◽  
Andreas Nocke ◽  
Chokri Cherif ◽  
Gerald Gerlach

Carbon particle-filled elastomers are a widely researched option to be used as piezoresistive strain sensors for soft robotics or human motion monitoring. Therefore, various polymers can be compounded with carbon black (CB), carbon nanotubes (CNT) or graphene. However, in many studies, the electrical resistance strain response of the carbon particle-filled elastomers is non-monotonic in dynamic evaluation scenarios. The non-monotonic material behavior is also called shoulder phenomenon or secondary peak. Until today, the underlying cause is not sufficiently well understood. In this study, several influencing test parameters on the shoulder phenomena are explored, such as strain level, strain rate and strain history. Moreover, material parameters such as CNT content and anisotropy are varied in melt-spun CNT filled thermoplastic polyurethane (TPU) filament yarns, and their non-monotonic sensor response is evaluated. Additionally, a theoretical concept for the underlying mechanism and thereupon-based model is presented. An equivalent circuit model is used, which incorporates the visco-elastic properties and the characteristic of the percolation network formed by the conductive filler material. The simulation results are in good agreement when compared to the experimental results.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2169
Author(s):  
Agnieszka Tabaczyńska ◽  
Anna Dąbrowska ◽  
Marcin Masłowski ◽  
Anna Strąkowska

Electro-conductive paths that are mechanically resistant and stable during simulated aging cycles are promising, in relation to the non-invasive application in e-textiles in our everyday surroundings. In the paper, an analysis of the influence of electro-conductive filler, as well as ionic liquid on surface resistance is provided. Authors proved that depending on the tested variant, obtained surface resistance may vary from 50 kΩ (when 50 phr of Ag and [bmim][PF6] ionic liquid applied) to 26 GΩ (when 25 phr of Ag and [bmim][PF6] ionic liquid applied). The samples were also evaluated after simulated aging cycles and the stability of electric properties was confirmed. Moreover, it was proved that the addition of ionic liquids reduced the resistance of vulcanizates, while no significant influence of the extrusion process on conductivity was observed.


Sign in / Sign up

Export Citation Format

Share Document