Experimental study on EFO process of thermosonic wire bonding by using high-speed video record

Author(s):  
Xiang Kang ◽  
Han Lei ◽  
Wang Fu-liang ◽  
Li Jun-hui
2012 ◽  
Vol 160 ◽  
pp. 77-81
Author(s):  
Jing Jing Tian ◽  
Lei Han

Kick-up phenomenon during looping is an important factor in thermosonic wire bonding. In this study, the loping process during wire bonding was recorded by using high-speed camera, and wire profiles evolution was obtained from images sequence by image processing method. With a polynomial fitting, the wire loop profiling was described by the curvature changing, and kick-up phenomenon on gold wire was found between the instant of 290th frame(0.0537s) to 380th frame (0.0703s), the change of curvature is divided into three phases, a looping phase, a mutation phase and a kick-up phase. While in the kick-up phase, the kick up phenomenon is the most obvious. These experimental results were useful for in-depth study of kick-up phenomenon by simulation.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Fuliang Wang ◽  
Dengke Fan

A wire clamp is used to grip a gold wire with in 1–2 ms during thermosonic wire bonding. Modern wire bonders require faster and larger opening wire clamps. In order to simplify the design process and find the key parameters affecting the opening of wire clamps, a model analysis based on energy conservation was developed. The relation between geometric parameters and the amplification ratio was obtained. A finite element (FE) model was also developed in order to calculate the amplification ratio and natural frequency. Experiments were carried out in order to confirm the results of these models. Model studies show that the arm length was the major factor affecting the opening of the wire clamp.


2019 ◽  
Vol 196 ◽  
pp. 00041
Author(s):  
Dmitry Kochkin ◽  
Valentin Belosludtsev ◽  
Veronica Sulyaeva

This paper is an experimental study of thermocapillary breakdown phenomenon in a horizontal film of liquid placed on a silicon nonisothermal substrate. With the help of a high-speed video camera the speed of the three-phase contact line was measured during the growth of a dry spot.


2021 ◽  
Vol 2088 (1) ◽  
pp. 012048
Author(s):  
N V Vasil’ev ◽  
Yu A Zeigarnik ◽  
K A Khodakov ◽  
S N Vavilov ◽  
A S Nikishin

Abstract An experimental study of the characteristics of single (solitary) bubbles obtained by means of focused laser heating of the surface during the boiling of two subcooled liquids with significantly different properties: water and refrigerant R113 has been carried out. To obtain the most complete detailed information, the technique of synchronized high-speed video filming of the process in two mutually perpendicular planes with a frame rate of up to 150 kHz was used. It is shown that during the boiling of a subcooled liquid, the main mechanism of heat removal from the bubble dome into the surrounding liquid is an unsteady heat conductance. Differences in the behavior of solitary vapor bubbles in the case of boiling of two liquids (water and refrigerant R113) are shown.


2013 ◽  
Vol 561 ◽  
pp. 36-40 ◽  
Author(s):  
Yong Liu ◽  
Zhao Xiang Liu ◽  
Liang Deng ◽  
Ying An ◽  
Xue Tao He ◽  
...  

As one directly method to produce nanofibers, electrospinning has been studied extensively. However, the buckling phenomenon is not understood completely especially to the process of melt electrospinning. The authors carried out a series of experimental study on this phenomenon with high speed video. This is the first article of the research, in which we defined three stages to the whole spinning process according to the time. The specialties of each stage were list out. The falling process was divided into straight-line movement, spiral swinging, and deposits on the collector three sections. The buckling reasons were provided.


2019 ◽  
Vol 85 (6) ◽  
pp. 53-63 ◽  
Author(s):  
I. E. Vasil’ev ◽  
Yu. G. Matvienko ◽  
A. V. Pankov ◽  
A. G. Kalinin

The results of using early damage diagnostics technique (developed in the Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) for detecting the latent damage of an aviation panel made of composite material upon bench tensile tests are presented. We have assessed the capabilities of the developed technique and software regarding damage detection at the early stage of panel loading in conditions of elastic strain of the material using brittle strain-sensitive coating and simultaneous crack detection in the coating with a high-speed video camera “Video-print” and acoustic emission system “A-Line 32D.” When revealing a subsurface defect (a notch of the middle stringer) of the aviation panel, the general concept of damage detection at the early stage of loading in conditions of elastic behavior of the material was also tested in the course of the experiment, as well as the software specially developed for cluster analysis and classification of detected location pulses along with the equipment and software for simultaneous recording of video data flows and arrays of acoustic emission (AE) data. Synchronous recording of video images and AE pulses ensured precise control of the cracking process in the brittle strain-sensitive coating (tensocoating)at all stages of the experiment, whereas the use of structural-phenomenological approach kept track of the main trends in damage accumulation at different structural levels and identify the sources of their origin when classifying recorded AE data arrays. The combined use of oxide tensocoatings and high-speed video recording synchronized with the AE control system, provide the possibility of definite determination of the subsurface defect, reveal the maximum principal strains in the area of crack formation, quantify them and identify the main sources of AE signals upon monitoring the state of the aviation panel under loading P = 90 kN, which is about 12% of the critical load.


Sign in / Sign up

Export Citation Format

Share Document