Investigating access to heterogeneous storage systems using linked data in UNICORE Grid middleware

Author(s):  
Roger Menday ◽  
M. Shahbaz Memon ◽  
A. Shiraz Memon ◽  
Achim Streit
2018 ◽  
Vol 37 (3) ◽  
pp. 29-49
Author(s):  
Kumar Sharma ◽  
Ujjal Marjit ◽  
Utpal Biswas

Resource Description Framework (RDF) is a commonly used data model in the Semantic Web environment. Libraries and various other communities have been using the RDF data model to store valuable data after it is extracted from traditional storage systems. However, because of the large volume of the data, processing and storing it is becoming a nightmare for traditional data-management tools. This challenge demands a scalable and distributed system that can manage data in parallel. In this article, a distributed solution is proposed for efficiently processing and storing the large volume of library linked data stored in traditional storage systems. Apache Spark is used for parallel processing of large data sets and a column-oriented schema is proposed for storing RDF data. The storage system is built on top of Hadoop Distributed File Systems (HDFS) and uses the Apache Parquet format to store data in a compressed form. The experimental evaluation showed that storage requirements were reduced significantly as compared to Jena TDB, Sesame, RDF/XML, and N-Triples file formats. SPARQL queries are processed using Spark SQL to query the compressed data. The experimental evaluation showed a good query response time, which significantly reduces as the number of worker nodes increases.


Author(s):  
T. A. Dodson ◽  
E. Völkl ◽  
L. F. Allard ◽  
T. A. Nolan

The process of moving to a fully digital microscopy laboratory requires changes in instrumentation, computing hardware, computing software, data storage systems, and data networks, as well as in the operating procedures of each facility. Moving from analog to digital systems in the microscopy laboratory is similar to the instrumentation projects being undertaken in many scientific labs. A central problem of any of these projects is to create the best combination of hardware and software to effectively control the parameters of data collection and then to actually acquire data from the instrument. This problem is particularly acute for the microscopist who wishes to "digitize" the operation of a transmission or scanning electron microscope. Although the basic physics of each type of instrument and the type of data (images & spectra) generated by each are very similar, each manufacturer approaches automation differently. The communications interfaces vary as well as the command language used to control the instrument.


2017 ◽  
Vol 137 (8) ◽  
pp. 596-597
Author(s):  
Kenta Koiwa ◽  
Kenta Suzuki ◽  
Kang-Zhi Liu ◽  
Tadanao Zanma ◽  
Masashi Wakaiki ◽  
...  

2016 ◽  
Vol E99.C (2) ◽  
pp. 293-301 ◽  
Author(s):  
Youngjoo LEE ◽  
Jaehwan JUNG ◽  
In-Cheol PARK

2018 ◽  
Author(s):  
Like Li ◽  
Kelvin Randhir ◽  
James F. Klausner ◽  
Ren-Wei Mei ◽  
Nick AuYeung

Sign in / Sign up

Export Citation Format

Share Document