Knowledge-Graph Based Multi-Target Deep-Learning Models for Train Anomaly Detection

Author(s):  
Zhiliang Qin ◽  
Chen Cen ◽  
Wang Jie ◽  
Teo Sin Gee ◽  
Vijay Ramaseshan Chandrasekhar ◽  
...  
2021 ◽  
Vol 11 (15) ◽  
pp. 7050
Author(s):  
Zeeshan Ahmad ◽  
Adnan Shahid Khan ◽  
Kashif Nisar ◽  
Iram Haider ◽  
Rosilah Hassan ◽  
...  

The revolutionary idea of the internet of things (IoT) architecture has gained enormous popularity over the last decade, resulting in an exponential growth in the IoT networks, connected devices, and the data processed therein. Since IoT devices generate and exchange sensitive data over the traditional internet, security has become a prime concern due to the generation of zero-day cyberattacks. A network-based intrusion detection system (NIDS) can provide the much-needed efficient security solution to the IoT network by protecting the network entry points through constant network traffic monitoring. Recent NIDS have a high false alarm rate (FAR) in detecting the anomalies, including the novel and zero-day anomalies. This paper proposes an efficient anomaly detection mechanism using mutual information (MI), considering a deep neural network (DNN) for an IoT network. A comparative analysis of different deep-learning models such as DNN, Convolutional Neural Network, Recurrent Neural Network, and its different variants, such as Gated Recurrent Unit and Long Short-term Memory is performed considering the IoT-Botnet 2020 dataset. Experimental results show the improvement of 0.57–2.6% in terms of the model’s accuracy, while at the same time reducing the FAR by 0.23–7.98% to show the effectiveness of the DNN-based NIDS model compared to the well-known deep learning models. It was also observed that using only the 16–35 best numerical features selected using MI instead of 80 features of the dataset result in almost negligible degradation in the model’s performance but helped in decreasing the overall model’s complexity. In addition, the overall accuracy of the DL-based models is further improved by almost 0.99–3.45% in terms of the detection accuracy considering only the top five categorical and numerical features.


Author(s):  
Yujie Chen ◽  
Tengfei Ma ◽  
Xixi Yang ◽  
Jianmin Wang ◽  
Bosheng Song ◽  
...  

Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure. Results Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines. Availability and implementation The source code and data are available at https://github.com/xzenglab/MUFFIN.


2021 ◽  
Vol 7 ◽  
pp. e795
Author(s):  
Pooja Vinayak Kamat ◽  
Rekha Sugandhi ◽  
Satish Kumar

Remaining Useful Life (RUL) estimation of rotating machinery based on their degradation data is vital for machine supervisors. Deep learning models are effective and popular methods for forecasting when rotating machinery such as bearings may malfunction and ultimately break down. During healthy functioning of the machinery, however, RUL is ill-defined. To address this issue, this study recommends using anomaly monitoring during both RUL estimator training and operation. Essential time-domain data is extracted from the raw bearing vibration data, and deep learning models are used to detect the onset of the anomaly. This further acts as a trigger for data-driven RUL estimation. The study employs an unsupervised clustering approach for anomaly trend analysis and a semi-supervised method for anomaly detection and RUL estimation. The novel combined deep learning-based anomaly-onset aware RUL estimation framework showed enhanced results on the benchmarked PRONOSTIA bearings dataset under non-varying operating conditions. The framework consisting of Autoencoder and Long Short Term Memory variants achieved an accuracy of over 90% in anomaly detection and RUL prediction. In the future, the framework can be deployed under varying operational situations using the transfer learning approach.


Author(s):  
Diana Gaifilina ◽  
Igor Kotenko

Introduction: The article discusses the problem of choosing deep learning models for detecting anomalies in Internet of Things (IoT) network traffic. This problem is associated with the necessity to analyze a large number of security events in order to identify the abnormal behavior of smart devices. A powerful technology for analyzing such data is machine learning and, in particular, deep learning. Purpose: Development of recommendations for the selection of deep learning models for anomaly detection in IoT network traffic. Results: The main results of the research are comparative analysis of deep learning models, and recommendations on the use of deep learning models for anomaly detection in IoT network traffic. Multilayer perceptron, convolutional neural network, recurrent neural network, long short-term memory, gated recurrent units, and combined convolutional-recurrent neural network were considered the basic deep learning models. Additionally, the authors analyzed the following traditional machine learning models: naive Bayesian classifier, support vector machines, logistic regression, k-nearest neighbors, boosting, and random forest. The following metrics were used as indicators of anomaly detection efficiency: accuracy, precision, recall, and F-measure, as well as the time spent on training the model. The constructed models demonstrated a higher accuracy rate for anomaly detection in large heterogeneous traffic typical for IoT, as compared to conventional machine learning methods. The authors found that with an increase in the number of neural network layers, the completeness of detecting anomalous connections rises. This has a positive effect on the recognition of unknown anomalies, but increases the number of false positives. In some cases, preparing traditional machine learning models takes less time. This is due to the fact that the application of deep learning methods requires more resources and computing power. Practical relevance: The results obtained can be used to build systems for network anomaly detection in Internet of Things traffic.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1466
Author(s):  
Kamil Faber ◽  
Marcin Pietron ◽  
Dominik Zurek

Multivariate time series anomaly detection is a widespread problem in the field of failure prevention. Fast prevention means lower repair costs and losses. The amount of sensors in novel industry systems makes the anomaly detection process quite difficult for humans. Algorithms that automate the process of detecting anomalies are crucial in modern failure prevention systems. Therefore, many machine learning models have been designed to address this problem. Mostly, they are autoencoder-based architectures with some generative adversarial elements. This work shows a framework that incorporates neuroevolution methods to boost the anomaly detection scores of new and already known models. The presented approach adapts evolution strategies for evolving an ensemble model, in which every single model works on a subgroup of data sensors. The next goal of neuroevolution is to optimize the architecture and hyperparameters such as the window size, the number of layers, and the layer depths. The proposed framework shows that it is possible to boost most anomaly detection deep learning models in a reasonable time and a fully automated mode. We ran tests on the SWAT and WADI datasets. To the best of our knowledge, this is the first approach in which an ensemble deep learning anomaly detection model is built in a fully automatic way using a neuroevolution strategy.


2021 ◽  
Author(s):  
Kanimozhi V ◽  
T. Prem Jacob

Abstract Although there exist various strategies for IoT Intrusion Detection, this research article sheds light on the aspect of how the application of top 10 Artificial Intelligence - Deep Learning Models can be useful for both supervised and unsupervised learning related to the IoT network traffic data. It pictures the detailed comparative analysis for IoT Anomaly Detection on sensible IoT gadgets that are instrumental in detecting IoT anomalies by the usage of the latest dataset IoT-23. Many strategies are being developed for securing the IoT networks, but still, development can be mandated. IoT security can be improved by the usage of various deep learning methods. This exploration has examined the top 10 deep-learning techniques, as the realistic IoT-23 dataset for improving the security execution of IoT network traffic. We built up various neural network models for identifying 5 kinds of IoT attack classes such as Mirai, Denial of Service (DoS), Scan, Man in the Middle attack (MITM-ARP), and Normal records. These attacks can be detected by using a "softmax" function of multiclass classification in deep-learning neural network models. This research was implemented in the Anaconda3 environment with different packages such as Pandas, NumPy, Scipy, Scikit-learn, TensorFlow 2.2, Matplotlib, and Seaborn. The utilization of AI-deep learning models embraced various domains like healthcare, banking and finance, findings and scientific researches, and the business organizations along with the concepts like the Internet of Things. We found that the top 10 deep-learning models are capable of increasing the accuracy; minimize the loss functions and the execution time for building that specific model. It contributes a major significance to IoT anomaly detection by using emerging technologies Artificial Intelligence and Deep Learning Neural Networks. Hence the alleviation of assaults that happen on an IoT organization will be effective. Among the top 10 neural networks, Convolutional neural networks, Multilayer perceptron, and Generative Adversarial Networks (GANs) output the highest accuracy scores of 0.996317, 0.996157, and 0.995829 with minimized loss function and less time pertain to the execution. This article added to completely grasp the quirks of irregularity identification of IoT anomalies. Henceforth, this research analysis depicts the implementations of the Top 10 AI-deep learning models, which come in handy that assist you to perceive different neural network models and IoT anomaly detection better.


2021 ◽  
Author(s):  
Kanimozhi V ◽  
T. Prem Jacob

Abstract Although numerous profound learning models have been proposed, this research article contributed to symbolize the investigation of artificial deep learning models on sensible IoT gadgets to perform online protection in IoT network traffic by using the realistic IoT-23 dataset. This dataset is a recent network traffic dataset generated from the real-time network traffic data of IoT appliances. IoT products are utilized in various program applications such as home, commercial, mechanization, and various forms of wearable technologies. IoT security is more critical than network security because of its massive attack surface and multiplied weak spots of IoT gadgets. Universally, the general amount of IoT gadgets conveyed by 2025 is foreseen to achieve 41600 million. Henceforth, IoT anomaly detection systems based on the realistic Iot-23 big data for detecting IoT-based attacks on the artificial neural networks of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and Multilayer perceptron (MLP) in IoT- cybersecurity has implemented and executed in this research article. As a result, Convolutional Neural Networks produces an outstanding performance of metric accuracy score is 0.998234, and minimal loss function is 0.008842, compare to Multilayer perceptron and Recurrent Neural Networks in IoT Anomaly Detection. Also generated well-displayed graph plots of Model_Accuracy, Learning curve of artificial Intelligence deep learning algorithms such as MLP, CNN, and RNN.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Sign in / Sign up

Export Citation Format

Share Document