MUFFIN: multi-scale feature fusion for drug–drug interaction prediction

Author(s):  
Yujie Chen ◽  
Tengfei Ma ◽  
Xixi Yang ◽  
Jianmin Wang ◽  
Bosheng Song ◽  
...  

Abstract Motivation Adverse drug–drug interactions (DDIs) are crucial for drug research and mainly cause morbidity and mortality. Thus, the identification of potential DDIs is essential for doctors, patients and the society. Existing traditional machine learning models rely heavily on handcraft features and lack generalization. Recently, the deep learning approaches that can automatically learn drug features from the molecular graph or drug-related network have improved the ability of computational models to predict unknown DDIs. However, previous works utilized large labeled data and merely considered the structure or sequence information of drugs without considering the relations or topological information between drug and other biomedical objects (e.g. gene, disease and pathway), or considered knowledge graph (KG) without considering the information from the drug molecular structure. Results Accordingly, to effectively explore the joint effect of drug molecular structure and semantic information of drugs in knowledge graph for DDI prediction, we propose a multi-scale feature fusion deep learning model named MUFFIN. MUFFIN can jointly learn the drug representation based on both the drug-self structure information and the KG with rich bio-medical information. In MUFFIN, we designed a bi-level cross strategy that includes cross- and scalar-level components to fuse multi-modal features well. MUFFIN can alleviate the restriction of limited labeled data on deep learning models by crossing the features learned from large-scale KG and drug molecular graph. We evaluated our approach on three datasets and three different tasks including binary-class, multi-class and multi-label DDI prediction tasks. The results showed that MUFFIN outperformed other state-of-the-art baselines. Availability and implementation The source code and data are available at https://github.com/xzenglab/MUFFIN.

2021 ◽  
Vol 11 (16) ◽  
pp. 7731
Author(s):  
Rao Zeng ◽  
Minghong Liao

DNA methylation is one of the most extensive epigenetic modifications. DNA N6-methyladenine (6mA) plays a key role in many biology regulation processes. An accurate and reliable genome-wide identification of 6mA sites is crucial for systematically understanding its biological functions. Some machine learning tools can identify 6mA sites, but their limited prediction accuracy and lack of robustness limit their usability in epigenetic studies, which implies the great need of developing new computational methods for this problem. In this paper, we developed a novel computational predictor, namely the 6mAPred-MSFF, which is a deep learning framework based on a multi-scale feature fusion mechanism to identify 6mA sites across different species. In the predictor, we integrate the inverted residual block and multi-scale attention mechanism to build lightweight and deep neural networks. As compared to existing predictors using traditional machine learning, our deep learning framework needs no prior knowledge of 6mA or manually crafted sequence features and sufficiently capture better characteristics of 6mA sites. By benchmarking comparison, our deep learning method outperforms the state-of-the-art methods on the 5-fold cross-validation test on the seven datasets of six species, demonstrating that the proposed 6mAPred-MSFF is more effective and generic. Specifically, our proposed 6mAPred-MSFF gives the sensitivity and specificity of the 5-fold cross-validation on the 6mA-rice-Lv dataset as 97.88% and 94.64%, respectively. Our model trained with the rice data predicts well the 6mA sites of other five species: Arabidopsis thaliana, Fragaria vesca, Rosa chinensis, Homo sapiens, and Drosophila melanogaster with a prediction accuracy 98.51%, 93.02%, and 91.53%, respectively. Moreover, via experimental comparison, we explored performance impact by training and testing our proposed model under different encoding schemes and feature descriptors.


2021 ◽  
Vol 13 (2) ◽  
pp. 38
Author(s):  
Yao Xu ◽  
Qin Yu

Great achievements have been made in pedestrian detection through deep learning. For detectors based on deep learning, making better use of features has become the key to their detection effect. While current pedestrian detectors have made efforts in feature utilization to improve their detection performance, the feature utilization is still inadequate. To solve the problem of inadequate feature utilization, we proposed the Multi-Level Feature Fusion Module (MFFM) and its Multi-Scale Feature Fusion Unit (MFFU) sub-module, which connect feature maps of the same scale and different scales by using horizontal and vertical connections and shortcut structures. All of these connections are accompanied by weights that can be learned; thus, they can be used as adaptive multi-level and multi-scale feature fusion modules to fuse the best features. Then, we built a complete pedestrian detector, the Adaptive Feature Fusion Detector (AFFDet), which is an anchor-free one-stage pedestrian detector that can make full use of features for detection. As a result, compared with other methods, our method has better performance on the challenging Caltech Pedestrian Detection Benchmark (Caltech) and has quite competitive speed. It is the current state-of-the-art one-stage pedestrian detection method.


2019 ◽  
Vol 49 ◽  
pp. 89-99 ◽  
Author(s):  
Yanling Du ◽  
Wei Song ◽  
Qi He ◽  
Dongmei Huang ◽  
Antonio Liotta ◽  
...  

2021 ◽  
Vol 13 (23) ◽  
pp. 4805
Author(s):  
Guangbin Zhang ◽  
Xianjun Gao ◽  
Yuanwei Yang ◽  
Mingwei Wang ◽  
Shuhao Ran

Clouds and snow in remote sensing imageries cover underlying surface information, reducing image availability. Moreover, they interact with each other, decreasing the cloud and snow detection accuracy. In this study, we propose a convolutional neural network for cloud and snow detection, named the cloud and snow detection network (CSD-Net). It incorporates the multi-scale feature fusion module (MFF) and the controllably deep supervision and feature fusion structure (CDSFF). MFF can capture and aggregate features at various scales, ensuring that the extracted high-level semantic features of clouds and snow are more distinctive. CDSFF can provide a deeply supervised mechanism with hinge loss and combine information from adjacent layers to gain more representative features. It ensures the gradient flow is more oriented and error-less, while retaining more effective information. Additionally, a high-resolution cloud and snow dataset based on WorldView2 (CSWV) was created and released. This dataset meets the training requirements of deep learning methods for clouds and snow in high-resolution remote sensing images. Based on the datasets with varied resolutions, CSD-Net is compared to eight state-of-the-art deep learning methods. The experiment results indicate that CSD-Net has an excellent detection accuracy and efficiency. Specifically, the mean intersection over the union (MIoU) of CSD-Net is the highest in the corresponding experiment. Furthermore, the number of parameters in our proposed network is just 7.61 million, which is the lowest of the tested methods. It only has 88.06 GFLOPs of floating point operations, which is less than the U-Net, DeepLabV3+, PSPNet, SegNet-Modified, MSCFF, and GeoInfoNet. Meanwhile, CSWV has a higher annotation quality since the same method can obtain a greater accuracy on it.


2021 ◽  
Vol 31 (4) ◽  
pp. 830-841
Author(s):  
Xinyi Wei ◽  
Siwei Zhang ◽  
Qi Qi ◽  
Hao Fu ◽  
Taorong Qiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document