Effects of Particle Diameter on Erosion Wear Characteristic of Deep-Sea Mining Pump

Author(s):  
Hao Wen ◽  
Shao-Jun Liu ◽  
Wei-Sheng Zou ◽  
Xiao-Zhou Hu ◽  
Zhe Dong
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Runkun Wang ◽  
Yingjie Guan ◽  
Xing Jin ◽  
Zhenji Tang ◽  
Zuchao Zhu ◽  
...  

As the core device of the deep-sea mining transport system, the slurry pump and its internal solid-liquid two-phase flow are extremely complicated; especially, the migration characteristics of particles have a great influence on the flow and wear of the pump. In order to grasp the particle motion law inside the slurry pump, this paper took into consideration the collision effects of the particles with particles and particles with walls and calculated the unsteady flow of the solid-liquid two-phase by CFD-DEM coupling algorithm. Then, the focus was put on the spatial distribution and movement characteristics of different particle diameters (namely, 5 mm, 10 mm, and 15 mm, while volume concentration Cv is constant 5%). The results show that the stratification phenomenon gradually disappears with the increase of particle diameter, and the intensity and scale of the vortex in the guide vane also increase obviously. Besides, as the particle diameter increases, the velocity changes more drastically, and the intensity and scale of the vortex increase significantly. Under low concentration conditions, the presence of particles has a limited influence on the hydraulic performance of the pump. By comparing with the experimental results, the simulation results are in good agreement with it, which proves that the CFD-DEM simulation in this paper is effective, and the conclusions can provide theoretical support for the design and analysis of the slurry pump in engineering application.


2020 ◽  
Vol 1 (154) ◽  
pp. 240-248
Author(s):  
Ya. Doroshenko

CFD modeling (Computational Fluid Dynamics) Lagrangian approach (model DPM (Discrete Phase Model)) in ANSYS Fluent R19.2 Academic software complex investigates the influence of twophase gas flow velocity, size and flow rate of dispersed particles on the location and magnitude of gas pipeline bends erosion wear. The motion of the continuous phase was modeled by the solution of the Navier-Stokes equation and the continuity of the closed two-parameter k-ε turbulence model with the corresponding initial and boundary conditions. The motion trajectories of the dispersed particles were determined by integrating the force equations acting on each particle. The erosion wear of gas pipeline bends was modeled using the Finney equation. The studies were performed for gas flow velocities at the inlet of the bend from 4 m/s to 19 m/s, the diameters of the dispersed particles 0.005 mm, 0.01 mm, 0.05 mm, 0.1 mm, 0.5 mm and 1.0 mm and the flow rate of the dispersed particles from 0.0002 kg/s to 0.0022 kg/s. Natural gas was selected as the continuous phase, and sand was dispersed. The geometry of each of the simulated taps and the pressure at the outlet of the bend were assumed to be the same. The simulation results were visualized in the postprocessor software complex by constructing erosion rate velocity fields on gas pipeline bends. From the visualized results it is determined that the largest influence on the location of the erosion wear of the pipeline bends has the diameter of the dispersed particles and the least concentration. The influence of the two-phase gas flow parameters on the location of the field of their maximum erosion wear is determined. The graphical dependences of the maximum velocity of erosion wear of gas pipeline bends on each of the studied parameters of the two-phase gas stream are constructed. It has been determined that the diameter of the dispersed particles and the velocity of the gas stream have the greatest influence on the erosion wear of the erosion of the bends. Keywords: bend, dispersed particle diameter, dispersed particle rate, dispersed phase, erosion wear, Finney equation, gas flow rate, Lagrange approach.


2010 ◽  
Vol 2010.49 (0) ◽  
pp. 151-152
Author(s):  
Masahide ISHIDA ◽  
Kazumichi SHIMIZU ◽  
Kohichi KINURA ◽  
Kengo HIRAMATU

Author(s):  
Xinqiang Liu ◽  
Hong Ji ◽  
Fei Liu ◽  
Nana Li ◽  
Jianjun Zhang ◽  
...  

To explore the spool orifice’s particle motion and erosion morphology in an electro-hydraulic servo valve under a small opening, a modeled particle motion visualization test and CFD calculation were conducted to study typical particle trajectory. The influence of pressure differential, particle shape, and particle diameter on the erosion rate along the working edges was discussed. The erosion characteristic morphology and working edges’ fillet diameter distribution were measured and analyzed. There are four typical particle motions: translation and spin on the wall faced the flow, translation and turn on the backflow wall, carried motion by the mainstream and particle rotation in a vortex. A model of the erosive particle motion of the spool orifice was built based on the visualization test and CFD. During these motions, the microscopic scraping and collision of particles with the working edges are the main causes of erosion wear. The erosion wear rate of the working edge is proportional to the pressure differential and the non-roundness of the particles. The fillet of a working edge periodically increases or decreases with the circumferential angle, which occurs due to the morphology and is consistent with the erosion wear rate distribution along the working edge.


Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


Author(s):  
Matthew R. Libera

The liquid droplets produced by atomization processes are believed to undergo substantial supercooling during solidification, because the catalytic heterogeneities, for statistical reasons, tend to be isolated in the larger droplets. This supercooling can lead to the nucleation of metastable phases. As part of a study on the effect of liquid supercooling on nonequilibrium solidification, three binary Fe-Ni alloys have been produced by conventional argon atomization (Fe-20Ni, Fe-30Ni, and Fe-40Ni). The primary variables in these experiments are: i) the alloy composition; and ii) the powder particle diameter (inversely proportional to supercooling). Of particular interest in this system is the competitive nucleation kinetics between the stable fee and metastable bec phases. Bcc is expected to nucleate preferentially with decreasing %Ni and decreasing particle diameter.


Sarsia ◽  
2003 ◽  
Vol 88 (4) ◽  
pp. 297-301 ◽  
Author(s):  
Guerra A. ◽  
Rocha F. ◽  
A. F. González
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document