Efficient bandwidth utilization through multicast receiver aggregation in wireless LAN spot

Author(s):  
Y. Moritani ◽  
Y. Atsumi
Author(s):  
S. Sarmah ◽  
S. K. Sarma ◽  
M. Rahman

IEEE 802.11 Wireless LAN, popularly known as WiFi, has become the admired source of internet connectivity for most of the offices as well as organizations. Due to the rapid growth of multimedia data and VoIP and also to provide better quality of service (QoS), bandwidth and management of bandwidth have become important factors in 802.11 wireless LAN. In 802.11 wireless LAN, Enhanced Distributed Coordination Access (EDCA) mechanism provides QoS with service differentiation by setting different priority to different traffic types. Some of the available methods provide priority based on user category also. In this paper we have proposed an intelligent bandwidth management technique based on the user priority value, traffic priority value and the bandwidth requirement value. By combining these three values, a new metric called request weight value is calculated. Based on this request weight value, dynamically bandwidth is allocated to the users. From the simulation results, we have seen that the proposed method performs well in proper utilization of bandwidth among the available users.


2010 ◽  
Vol E93-B (5) ◽  
pp. 1151-1154
Author(s):  
Jihoon LEE ◽  
Seungwoo JEON ◽  
Jaehoon KIM

Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


2017 ◽  
Vol 11 (1) ◽  
pp. 14-24
Author(s):  
Е. М. Abbasov

The problems of integration of the various wireless technologies, for-consists in the provision of required transmission speed and the transmission of information over a considerable distance at low power sensor nodes transmitters wireless Internet-water network for remote monitoring. Analyzed the integration of wireless LAN standard IEEE 802.11n/g and Bluetooth. Determined Graphic analytical dependence-dence, the defining characteristics of the data rate for wireless IEEE 802.11n / g networks. It analyzes the main shortcomings of BSS associated with ef cient use of batteries; the basic Metody reduce energy consumption for WSN based on the ZigBee technology, based on the planning schemes of awakening and data collection schemes. The possibilities MeshLogic technology solutions for the monitoring and control tasks that are critical to BPE-autonomous work Meni sensors.


2019 ◽  
Vol 14 ◽  
Author(s):  
Tayyab Khan ◽  
Karan Singh ◽  
Kamlesh C. Purohit

Background: With the growing popularity of various group communication applications such as file transfer, multimedia events, distance learning, email distribution, multiparty video conferencing and teleconferencing, multicasting seems to be a useful tool for efficient multipoint data distribution. An efficient communication technique depends on the various parameters like processing speed, buffer storage, and amount of data flow between the nodes. If data exceeds beyond the capacity of a link or node, then it introduces congestion in the network. A series of multicast congestion control algorithms have been developed, but due to the heterogeneous network environment, these approaches do not respond nor reduce congestion quickly whenever network behavior changes. Objective: Multicasting is a robust and efficient one-to-many (1: M) group transmission (communication) technique to reduced communication cost, bandwidth consumption, processing time and delays with similar reliability (dependability) as of regular unicast. This patent presents a novel and comprehensive congestion control method known as integrated multicast congestion control approach (ICMA) to reduce packet loss. Methods: The proposed mechanism is based on leave-join and flow control mechanism along with proportional integrated and derivate (PID) controller to reduce packet loss, depending on the congestion status. In the proposed approach, Proportional integrated and derivate controller computes expected incoming rate at each router and feedback this rate to upstream routers of the multicast network to stabilize their local buffer occupancy. Results: Simulation results on NS-2 exhibit the immense performance of the proposed approach in terms of delay, throughput, bandwidth utilization, and packet loss than other existing methods. Conclusion: The proposed congestion control scheme provides better bandwidth utilization and throughput than other existing approaches. Moreover, we have discussed existing congestion control schemes with their research gaps. In the future, we are planning to explore the fairness and quality of service issue in multicast communication.


Sign in / Sign up

Export Citation Format

Share Document