Classification of Intestinal Gland Cell-Graphs Using Graph Neural Networks

Author(s):  
Linda Studer ◽  
Jannis Wallau ◽  
Heather Dawson ◽  
Inti Zlobec ◽  
Andreas Fischer
2021 ◽  
Vol 13 (3) ◽  
pp. 64
Author(s):  
Jie Yu ◽  
Yaliu Li ◽  
Chenle Pan ◽  
Junwei Wang

Classification of resource can help us effectively reduce the work of filtering massive academic resources, such as selecting relevant papers and focusing on the latest research by scholars in the same field. However, existing graph neural networks do not take into account the associations between academic resources, leading to unsatisfactory classification results. In this paper, we propose an Association Content Graph Attention Network (ACGAT), which is based on the association features and content attributes of academic resources. The semantic relevance and academic relevance are introduced into the model. The ACGAT makes full use of the association commonality and the influence information of resources and introduces an attention mechanism to improve the accuracy of academic resource classification. We conducted experiments on a self-built scholar network and two public citation networks. Experimental results show that the ACGAT has better effectiveness than existing classification methods.


2021 ◽  
Author(s):  
Andac Demir ◽  
Toshiaki Koike-Akino ◽  
Ye Wang ◽  
Masaki Haruna ◽  
Deniz Erdogmus

2021 ◽  
Vol 13 (7) ◽  
pp. 1404
Author(s):  
Hongying Liu ◽  
Derong Xu ◽  
Tianwen Zhu ◽  
Fanhua Shang ◽  
Yuanyuan Liu ◽  
...  

Classification of polarimetric synthetic aperture radar (PolSAR) images has achieved good results due to the excellent fitting ability of neural networks with a large number of training samples. However, the performance of most convolutional neural networks (CNNs) degrades dramatically when only a few labeled training samples are available. As one well-known class of semi-supervised learning methods, graph convolutional networks (GCNs) have gained much attention recently to address the classification problem with only a few labeled samples. As the number of layers grows in the network, the parameters dramatically increase. It is challenging to determine an optimal architecture manually. In this paper, we propose a neural architecture search method based GCN (ASGCN) for the classification of PolSAR images. We construct a novel graph whose nodes combines both the physical features and spatial relations between pixels or samples to represent the image. Then we build a new searching space whose components are empirically selected from some graph neural networks for architecture search and develop the differentiable architecture search method to construction our ASGCN. Moreover, to address the training of large-scale images, we present a new weighted mini-batch algorithm to reduce the computing memory consumption and ensure the balance of sample distribution, and also analyze and compare with other similar training strategies. Experiments on several real-world PolSAR datasets show that our method has improved the overall accuracy as much as 3.76% than state-of-the-art methods.


Author(s):  
Kaixiong Zhou ◽  
Qingquan Song ◽  
Xiao Huang ◽  
Daochen Zha ◽  
Na Zou ◽  
...  

The classification of graph-structured data has be-come increasingly crucial in many disciplines. It has been observed that the implicit or explicit hierarchical community structures preserved in real-world graphs could be useful for downstream classification applications. A straightforward way to leverage the hierarchical structure is to make use the pooling algorithms to cluster nodes into fixed groups, and shrink the input graph layer by layer to learn the pooled graphs.However, the pool shrinking discards the graph details to make it hard to distinguish two non-isomorphic graphs, and the fixed clustering ignores the inherent multiple characteristics of nodes. To compensate the shrinking loss and learn the various nodes’ characteristics, we propose the multi-channel graph neural networks (MuchGNN). Motivated by the underlying mechanisms developed in convolutional neural networks, we define the tailored graph convolutions to learn a series of graph channels at each layer, and shrink the graphs hierarchically to en-code the pooled structures. Experimental results on real-world datasets demonstrate the superiority of MuchGNN over the state-of-the-art methods.


2020 ◽  
Vol 2020 (10) ◽  
pp. 28-1-28-7 ◽  
Author(s):  
Kazuki Endo ◽  
Masayuki Tanaka ◽  
Masatoshi Okutomi

Classification of degraded images is very important in practice because images are usually degraded by compression, noise, blurring, etc. Nevertheless, most of the research in image classification only focuses on clean images without any degradation. Some papers have already proposed deep convolutional neural networks composed of an image restoration network and a classification network to classify degraded images. This paper proposes an alternative approach in which we use a degraded image and an additional degradation parameter for classification. The proposed classification network has two inputs which are the degraded image and the degradation parameter. The estimation network of degradation parameters is also incorporated if degradation parameters of degraded images are unknown. The experimental results showed that the proposed method outperforms a straightforward approach where the classification network is trained with degraded images only.


2020 ◽  
Author(s):  
Artur Schweidtmann ◽  
Jan Rittig ◽  
Andrea König ◽  
Martin Grohe ◽  
Alexander Mitsos ◽  
...  

<div>Prediction of combustion-related properties of (oxygenated) hydrocarbons is an important and challenging task for which quantitative structure-property relationship (QSPR) models are frequently employed. Recently, a machine learning method, graph neural networks (GNNs), has shown promising results for the prediction of structure-property relationships. GNNs utilize a graph representation of molecules, where atoms correspond to nodes and bonds to edges containing information about the molecular structure. More specifically, GNNs learn physico-chemical properties as a function of the molecular graph in a supervised learning setup using a backpropagation algorithm. This end-to-end learning approach eliminates the need for selection of molecular descriptors or structural groups, as it learns optimal fingerprints through graph convolutions and maps the fingerprints to the physico-chemical properties by deep learning. We develop GNN models for predicting three fuel ignition quality indicators, i.e., the derived cetane number (DCN), the research octane number (RON), and the motor octane number (MON), of oxygenated and non-oxygenated hydrocarbons. In light of limited experimental data in the order of hundreds, we propose a combination of multi-task learning, transfer learning, and ensemble learning. The results show competitive performance of the proposed GNN approach compared to state-of-the-art QSPR models making it a promising field for future research. The prediction tool is available via a web front-end at www.avt.rwth-aachen.de/gnn.</div>


Sign in / Sign up

Export Citation Format

Share Document