Research on On-line Reliability State Detection Method of Power Electronic Devices Based on Turn-off Losses

Author(s):  
Weiwei Wei ◽  
Guoqing Xu
2022 ◽  
Vol 8 ◽  
pp. 163-170
Author(s):  
Lingfeng Shao ◽  
Guoqing Xu ◽  
Weiwei Wei ◽  
Xichun Zhang ◽  
Huiyun Li ◽  
...  

Author(s):  
Zhenhua Li ◽  
Weihui Jiang ◽  
Li Qiu ◽  
Zhenxing Li ◽  
Yanchun Xu

Background: Winding deformation is one of the most common faults in power transformers, which seriously threatens the safe operation of transformers. In order to discover the hidden trouble of transformer in time, it is of great significance to actively carry out the research of transformer winding deformation detection technology. Methods: In this paper, several methods of winding deformation detection with on-line detection prospects are summarized. The principles and characteristics of each method are analyzed, and the advantages and disadvantages of each method as well as the future research directions are expounded. Finally, aiming at the existing problems, the development direction of detection method for winding deformation in the future is prospected. Results: The on-line frequency response analysis method is still immature, and the vibration detection method is still in the theoretical research stage. Conclusion: The ΔV − I1 locus method provides a new direction for on-line detection of transformer winding deformation faults, which has certain application prospects and practical engineering value.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4176 ◽  
Author(s):  
Chaoqun Jiao ◽  
Juan Zhang ◽  
Zhibin Zhao ◽  
Zuoming Zhang ◽  
Yuanliang Fan

With the development of China’s electric power, power electronics devices such as insulated-gate bipolar transistors (IGBTs) have been widely used in the field of high voltages and large currents. However, the currents in these power electronic devices are transient. For example, the uneven currents and internal chip currents overshoot, which may occur when turning on and off, and could have a great impact on the device. In order to study the reliability of these power electronics devices, this paper proposes a miniature printed circuit board (PCB) Rogowski coil that measures the current of these power electronics devices without changing their internal structures, which provides a reference for the subsequent reliability of their designs.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4654
Author(s):  
Andrzej Wetula ◽  
Andrzej Bień ◽  
Mrunal Parekh

Measurements of medium and high voltages in a power grid are normally performed with large and bulky voltage transformers or capacitive dividers. Besides installation problems, these devices operate in a relatively narrow frequency band, which limits their usability in modern systems that are saturated with power electronic devices. A sensor that can be installed directly on a wire and can operate without a galvanic connection to the ground may be used as an alternative voltage measurement device. This type of voltage sensor can complement current sensors installed on a wire, forming a complete power acquisition system. This paper presents such a sensor. Our sensor is built using two dielectric elements with different permeability coefficients. A finite element method simulation is used to estimate the parameters of a constructed sensor. Besides simulations, a laboratory model of a sensor was built and tested in a medium-voltage substation. Our results provide a proof of concept for the presented sensor. Some errors in voltage reconstruction have been traced to an oversimplified data acquisition and transmission system, which has to be improved during the further development of the sensor.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1717
Author(s):  
Camilo Andrés Ordóñez ◽  
Antonio Gómez-Expósito ◽  
José María Maza-Ortega

This paper reviews the basics of series compensation in transmission systems through a literature survey. The benefits that this technology brings to enhance the steady state and dynamic operation of power systems are analyzed. The review outlines the evolution of the series compensation technologies, from mechanically operated switches to line- and self-commutated power electronic devices, covering control issues, different applications, practical realizations, and case studies. Finally, the paper closes with the major challenges that this technology will face in the near future to achieve a fully decarbonized power system.


Measurement ◽  
2020 ◽  
Vol 159 ◽  
pp. 107771 ◽  
Author(s):  
Xiaohui Cao ◽  
Wen Xie ◽  
Siddiqui Muneeb Ahmed ◽  
Cun Rong Li

Sign in / Sign up

Export Citation Format

Share Document