The application of particle filtering to grasping acquisition with visual occlusion and tactile sensing

Author(s):  
Li Zhang ◽  
Jeffrey C. Trinkle
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3818
Author(s):  
Li Qin ◽  
Hongyu Wang ◽  
Yazhou Yuan ◽  
Shufan Qin

The peg-in-hole task with object feature uncertain is a typical case of robotic operation in the real-world unstructured environment. It is nontrivial to realize object perception and operational decisions autonomously, under the usual visual occlusion and real-time constraints of such tasks. In this paper, a Bayesian networks-based strategy is presented in order to seamlessly combine multiple heterogeneous senses data like humans. In the proposed strategy, an interactive exploration method implemented by hybrid Monte Carlo sampling algorithms and particle filtering is designed to identify the features' estimated starting value, and the memory adjustment method and the inertial thinking method are introduced to correct the target position and shape features of the object respectively. Based on the Dempster–Shafer evidence theory (D-S theory), a fusion decision strategy is designed using probabilistic models of forces and positions, which guided the robot motion after each acquisition of the estimated features of the object. It also enables the robot to judge whether the desired operation target is achieved or the feature estimate needs to be updated. Meanwhile, the pliability model is introduced into repeatedly perform exploration, planning and execution steps to reduce interaction forces, the number of exploration. The effectiveness of the strategy is validated in simulations and in a physical robot task.


2019 ◽  
Vol 139 (11) ◽  
pp. 375-380
Author(s):  
Harutoshi Takahashi ◽  
Yuta Namba ◽  
Takashi Abe ◽  
Masayuki Sohgawa

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1090
Author(s):  
Wenxu Wang ◽  
Damián Marelli ◽  
Minyue Fu

A popular approach for solving the indoor dynamic localization problem based on WiFi measurements consists of using particle filtering. However, a drawback of this approach is that a very large number of particles are needed to achieve accurate results in real environments. The reason for this drawback is that, in this particular application, classical particle filtering wastes many unnecessary particles. To remedy this, we propose a novel particle filtering method which we call maximum likelihood particle filter (MLPF). The essential idea consists of combining the particle prediction and update steps into a single one in which all particles are efficiently used. This drastically reduces the number of particles, leading to numerically feasible algorithms with high accuracy. We provide experimental results, using real data, confirming our claim.


Author(s):  
Stephan Schlupkothen ◽  
Gerd Ascheid

Abstract The localization of multiple wireless agents via, for example, distance and/or bearing measurements is challenging, particularly if relying on beacon-to-agent measurements alone is insufficient to guarantee accurate localization. In these cases, agent-to-agent measurements also need to be considered to improve the localization quality. In the context of particle filtering, the computational complexity of tracking many wireless agents is high when relying on conventional schemes. This is because in such schemes, all agents’ states are estimated simultaneously using a single filter. To overcome this problem, the concept of multiple particle filtering (MPF), in which an individual filter is used for each agent, has been proposed in the literature. However, due to the necessity of considering agent-to-agent measurements, additional effort is required to derive information on each individual filter from the available likelihoods. This is necessary because the distance and bearing measurements naturally depend on the states of two agents, which, in MPF, are estimated by two separate filters. Because the required likelihood cannot be analytically derived in general, an approximation is needed. To this end, this work extends current state-of-the-art likelihood approximation techniques based on Gaussian approximation under the assumption that the number of agents to be tracked is fixed and known. Moreover, a novel likelihood approximation method is proposed that enables efficient and accurate tracking. The simulations show that the proposed method achieves up to 22% higher accuracy with the same computational complexity as that of existing methods. Thus, efficient and accurate tracking of wireless agents is achieved.


Sign in / Sign up

Export Citation Format

Share Document