scholarly journals Reinforcement Learning Meets Hybrid Zero Dynamics: A Case Study for RABBIT

Author(s):  
Guillermo A. Castillo ◽  
Bowen Weng ◽  
Ayonga Hereid ◽  
Zheng Wang ◽  
Wei Zhang
2019 ◽  
Author(s):  
Niclas Ståhl ◽  
Göran Falkman ◽  
Alexander Karlsson ◽  
Gunnar Mathiason ◽  
Jonas Boström

<p>In medicinal chemistry programs it is key to design and make compounds that are efficacious and safe. This is a long, complex and difficult multi-parameter optimization process, often including several properties with orthogonal trends. New methods for the automated design of compounds against profiles of multiple properties are thus of great value. Here we present a fragment-based reinforcement learning approach based on an actor-critic model, for the generation of novel molecules with optimal properties. The actor and the critic are both modelled with bidirectional long short-term memory (LSTM) networks. The AI method learns how to generate new compounds with desired properties by starting from an initial set of lead molecules and then improve these by replacing some of their fragments. A balanced binary tree based on the similarity of fragments is used in the generative process to bias the output towards structurally similar molecules. The method is demonstrated by a case study showing that 93% of the generated molecules are chemically valid, and a third satisfy the targeted objectives, while there were none in the initial set.</p>


2010 ◽  
Vol 1 (1) ◽  
pp. 39-59 ◽  
Author(s):  
Ender Özcan ◽  
Mustafa Misir ◽  
Gabriela Ochoa ◽  
Edmund K. Burke

Hyper-heuristics can be identified as methodologies that search the space generated by a finite set of low level heuristics for solving search problems. An iterative hyper-heuristic framework can be thought of as requiring a single candidate solution and multiple perturbation low level heuristics. An initially generated complete solution goes through two successive processes (heuristic selection and move acceptance) until a set of termination criteria is satisfied. A motivating goal of hyper-heuristic research is to create automated techniques that are applicable to a wide range of problems with different characteristics. Some previous studies show that different combinations of heuristic selection and move acceptance as hyper-heuristic components might yield different performances. This study investigates whether learning heuristic selection can improve the performance of a great deluge based hyper-heuristic using an examination timetabling problem as a case study.


Sign in / Sign up

Export Citation Format

Share Document