Design Process of Optimal Dead-time for SiC MOSFET-Based Three-Phase Six-Switch Rectifier

Author(s):  
Jizhe Wang ◽  
Sho Tezuka ◽  
Kazuhiro Kajiwara ◽  
Akio Segami ◽  
Nobumasa Matsui ◽  
...  
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4407
Author(s):  
Mbika Muteba

There is a necessity to design a three-phase squirrel cage induction motor (SCIM) for high-speed applications with a larger air gap length in order to limit the distortion of air gap flux density, the thermal expansion of stator and rotor teeth, centrifugal forces, and the magnetic pull. To that effect, a larger air gap length lowers the power factor, efficiency, and torque density of a three-phase SCIM. This should inform motor design engineers to take special care during the design process of a three-phase SCIM by selecting an air gap length that will provide optimal performance. This paper presents an approach that would assist with the selection of an optimal air gap length (OAL) and optimal capacitive auxiliary stator winding (OCASW) configuration for a high torque per ampere (TPA) three-phase SCIM. A genetic algorithm (GA) assisted by finite element analysis (FEA) is used in the design process to determine the OAL and OCASW required to obtain a high torque per ampere without compromising the merit of achieving an excellent power factor and high efficiency for a three-phase SCIM. The performance of the optimized three-phase SCIM is compared to unoptimized machines. The results obtained from FEA are validated through experimental measurements. Owing to the penalty functions related to the value of objective and constraint functions introduced in the genetic algorithm model, both the FEA and experimental results provide evidence that an enhanced torque per ampere three-phase SCIM can be realized for a large OAL and OCASW with high efficiency and an excellent power factor in different working conditions.


Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 92 ◽  
Author(s):  
Jeong-Woo Lim ◽  
Hanyoung Bu ◽  
Younghoon Cho

This paper proposes a novel three-phase voltage source inverter dead-time compensation strategy for accurate compensation in wide current regions of the inverter. In particular, an analysis of the output voltage distortion of the inverter, which appears as parasitic components of the switches, was conducted for proper voltage compensation in the low current region, and an on-line compensation voltage controller was proposed. Additionally, a new trapezoidal compensation voltage implementation method using the current phase was proposed to simplify realizing the trapezoidal shape of the three-phase compensation voltages. Finally, when the proposed dead-time compensation strategy was applied, the maximum phase voltage magnitude in the linear modulation voltage regions was defined to achieve smooth operation even at high modulation index. Simulations and experiments were conducted to verify the performance of the proposed dead-time compensation scheme.


2019 ◽  
Vol 34 (12) ◽  
pp. 11645-11660 ◽  
Author(s):  
Lei Zhang ◽  
Xibo Yuan ◽  
Jiahang Zhang ◽  
Xiaojie Wu ◽  
Yonglei Zhang ◽  
...  
Keyword(s):  

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 969
Author(s):  
Yang ◽  
Choi

The conventional three-phase split-output inverter (SOI) has been used for grid-connected applications because it does not require dead time and has no shoot-through problems. Recently, the conventional inverter uses the silicon carbide (SiC) schottky diodes for the freewheeling diodes because of its no reverse-recovery problem. Nevertheless, in a practical design, the SiC schottky diodes suffer from current overshoots and voltage oscillations. These overshoots and oscillations result in switching-power losses, decreasing the power efficiency of the inverter. To alleviate this drawback, we present a three-phase SOI using magnetically coupled inductor switching technique. The magnetically coupled inductor switching technique uses one auxiliary diode and coupled inductor for each switching leg in the three-phase SOI. By the operation of the coupled inductor, the main diode current is shifted to the auxiliary diode without the reverse-recovery process. The proposed inverter reduces switching-power losses by alleviating current overshoots and voltage oscillations of SiC schottky diodes. It achieves higher power efficiency than the conventional inverter. We discuss experimental results for a 1.0 kW prototype inverter to verify the performance of the proposed inverter.


Author(s):  
Kartik Prasad Basu ◽  
Moley Kutty George

Most faults in medium voltage (MV) distribution lines are temporary line to ground (LG) faults. Three-phase auto reclosing (TPAR) is commonly used to remove this fault with temporary disconnection of all the phases. Multi-shot single-phase auto reclosing (SPAR) may also be used to remove the LG fault. But it produces highly unbalanced and low voltage across the load during the reclosure dead time. It is proposed to connect a zigzag winding grounding transformer at the load bus to maintain the 3-phase load voltage when one phase opens during the SPAR. With low value of grounding resistance the 3-phase voltage during the SPAR dead time becomes approximately balanced. Directional over current relays may be used for the protection. Analysis of a MV radial distribution system having a zigzag transformer connected to the remotest load bus is presented with the computation of voltages during the dead time of SPAR.


1994 ◽  
Vol 116 (4) ◽  
pp. 997-1004 ◽  
Author(s):  
M. Chirehdast ◽  
H.-C. Gea ◽  
N. Kikuchi ◽  
P. Y. Papalambros

Structural optimization procedures usually start from a given design topology and vary proportions or boundary shapes of the design to achieve optimality of an objective under various constraints. This article presents examples of the application of a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated. A three-phase design process is used. In Phase I, an optimal initial topology is created by a homogenization method as a gray-scale image. In Phase II, the image is transformed to a realizable design using computer vision techniques. In Phase III, the design is parameterized and treated in detail by conventional size and shape optimization techniques. Fully-automated procedures for optimization of two-dimensional solid structures are outlined, and several practical design problems for this type of structures are solved using the proposed procedure, including a crane hook and a bicycle frame.


2011 ◽  
Vol 301-303 ◽  
pp. 1754-1759
Author(s):  
Feng Lv ◽  
T. Luan ◽  
C. H. Zhang

This paper discusses the principle of SPWM, as well as its mathematical models, highlight introduce the generation principle of SPWM wave based on TI digital signal processor TMS320LF2407A. The formula and mathematical model are simplified by using the symmetric regular sampling method. Update the value of the program by comparing the look-up table, this method improves the operational efficiency, and reduces the error generation. The paper detailed analysis the configuration of each register in event manager module, and gives a critical interrupt subroutine. Through online simulation debugging, get the correct SPWM and the corresponding dead-time waveform.


Sign in / Sign up

Export Citation Format

Share Document