The Design and Implementation of Three-Phase SPWM Based on DSP

2011 ◽  
Vol 301-303 ◽  
pp. 1754-1759
Author(s):  
Feng Lv ◽  
T. Luan ◽  
C. H. Zhang

This paper discusses the principle of SPWM, as well as its mathematical models, highlight introduce the generation principle of SPWM wave based on TI digital signal processor TMS320LF2407A. The formula and mathematical model are simplified by using the symmetric regular sampling method. Update the value of the program by comparing the look-up table, this method improves the operational efficiency, and reduces the error generation. The paper detailed analysis the configuration of each register in event manager module, and gives a critical interrupt subroutine. Through online simulation debugging, get the correct SPWM and the corresponding dead-time waveform.

2011 ◽  
Vol 268-270 ◽  
pp. 1681-1686
Author(s):  
Chao Yong Tuo

Compared with traditional three-phase motors, six-phase induction motors due to their high reliabilities and low DC side voltages can achieve high power drives using devices with lower voltage level. In this paper, it analyzes the research status of six-phase induction motors, introduces the winding structures of six-phase induction motors, and finally designs the vector control system for six-phase induction motors taking the Digital Signal Processor (DSP) as the core. It introduces DSP circuit implementations, emphasizes to describe software structures of the control system, and proposes a detailed software flow chart.


Author(s):  
P. Avirajamanjula ◽  
P. Palanivel

A direct Selective current harmonic elimination pulse width modulation technique is proposed for induction motor drive fed from voltage source inverter. The developed adaptive filtering algorithm for the selective current harmonic elimination in a three phase Voltage Source Inverter is a direct method to improve the line current quality of the Voltage Source Inverter base drive at any load condition. The self-adaptive algorithm employed has the capability of managing the time varying nature of load (current). The proposed Normalized Least Mean Squares algorithm based scheme eliminates the selected dominant harmonics in load current using only the knowledge of the frequencies to be eliminated. The algorithm is simulated using Matlab/Simulink tool for a three-phase Voltage Source Inverter to eliminate the fifth and seventh harmonics. The system performance is analyzed based on the simulation results considering total harmonic distortion, magnitude of eliminated harmonics and harmonic spectrum. The corroboration is done in the designed Voltage Source Inverter feeding induction motor using digital signal processor-TMS320L2812.The developed algorithm is transferred to digital signal processor using VisSim<sup>TM</sup> software.


Author(s):  
Mhammed Hasoun ◽  
Aziz El Afia ◽  
Mohamed Khafallah ◽  
Karim Benkirane

The current paper aims at presenting and examining an implementation on a digital signal processor (DSP) of the conventional space vector pulse width modulation (CSVPWM) so as to control the dual three phase permanent magnet synchronous motors (DTP-PMSM) drives applied on electric ship propulsion. It is also an attempt to accomplish a developed control of this technique based on vector space decomposition (VSD) strategy. By this strategy, the analysis and the control of the machine are achieved in three two-dimensional orthogonal subspaces. Among the 12 voltage vectors having maximum, the conventional technique namely the adjacent two-vectors (12SA2V) is chosen. Thereby, the test platform allows the implementation of the chosen vectors which are modeled on MATLAB/Simulink using block diagrams and the automatically generated code which is targeted in the DSP card processor. Simulation and experimental results have exposed the efficiency of the proposed test bench of 5 KW prototype machine by using a low-cost TMS32F28379D.


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1734
Author(s):  
Haris Kovačević ◽  
Lucijan Korošec ◽  
Miro Milanovič

This article presents a single-shunt measurement of a three-level inverter using a modified space-vector modulation to reconstruct the three-phase load current. The proposed method was implemented on a digital signal processor (DSP), and the algorithm was verified in the laboratory experiment. Through the work, it was proven that the single-shunt three-phase current measurement could be performed using the space-vector modulation for three-level inverters in an analogous way to ordinary three-phase inverters. Three-phase current reconstruction for ordinary three-phase inverters was performed using the ordinary space-vector modulation with eight vectors, but for three-level inverters, 21 vectors were available. When the inverter was working on the edges between two vectors, the modulation disturbances appeared as current spikes. This problem was solved using the modified SVM performed by shifting the SVM signals. Carefully designed signal shifting (vector injection) demonstrated an excellent reconstruction of the three-phase load currents that were single-shunt measured.


2016 ◽  
Vol 25 (11) ◽  
pp. 1650133 ◽  
Author(s):  
Meng Wang ◽  
Yanyan Shi

For a fully digital control of PWM converters, considerable research has been done based on the predictive current control (PCC) scheme. However, it requires a large amount of calculation in the step of experimental implementation. Besides, when compared with the classical linear control scheme, the sampling interval of the PCC scheme must be shorter to obtain the same control performance for current. Due to this, a digital signal processor with excellent performance is required. This paper proposes an improved simplified model PCC scheme for three-phase PWM converters. The main objective is to simplify the PCC scheme. Also, the proposed control scheme is able to reduce the calculation time without affecting the performance. Simulations and experiments are carried out to investigate the presented novel predictive current control scheme. The results indicate that the three-phase PWM converter has excellent static and dynamic performance with the proposed scheme. Besides, the calculation time can be obviously shortened.


2019 ◽  
Vol 16 (6) ◽  
pp. 782-790
Author(s):  
Mohsen Karimi ◽  
Mohammad Pichan ◽  
Mehdi Sadri ◽  
Seyed Morteza Seyedjafari

Purpose This paper aims to investigate an improved control method and digital signal processor-based (DSP-based) digital implementation of three-phase standalone inverter. The proposed method is performance developed of the proportional-resonant controller (PRC) with harmonic injection technique, aiming to improve load voltages quality under different loads, especially nonlinear loads. The advanced proposed multi-loop controller is consisted of current harmonic loops for suppressing odd harmonic, which are analyzed in discrete-time domain. Besides, the voltage loop is also used to compensate the output capacitor voltage. Design/methodology/approach The proposed method can effectively enlarge output voltage stability with low total harmonics distortion and improve the dynamic transient response. The other advantage of the proposed PRC is the injection of the selective harmonic without any additional calculation compensator. Findings The method is given the opportunity to be controlled exactly all harmful outputs with high-quality voltage referenced of the standalone inverter. The proposed method is implemented using a DSP processor (TMS320F28335) and is verified on the 10 kVA three-phase standalone inverter prototype. Originality/value The proposed method is performance developed of the PRC with harmonic injection technique, aiming to improve load voltages quality under different loads, especially nonlinear loads.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1074 ◽  
Author(s):  
Eduardo Zafra ◽  
Sergio Vazquez ◽  
Hipolito Guzman Miranda ◽  
Juan A. Sanchez ◽  
Abraham Marquez ◽  
...  

This work describes an efficient implementation in terms of computation time and resource usage in a Field-Programmable System-On-Chip (FPSoC) of a Finite Control Set Model Predictive Control (FCS-MPC) algorithm. As an example, the FCS-MPC implementation is used for the current reference tracking of a two-level three-phase power converter. The proposed solution is an enabler for using both complex control algorithms and digital controllers for high switching frequency semiconductor technologies. An original HW/SW (hardware and software) system architecture for an FPSoC is designed to take advantage of a modern operating system, while removing time uncertainty in real-time software tasks, and exploiting dedicated FPGA fabric for the most complex computations. In addition, two different architectures for the FPGA-implemented functionality are proposed and compared in order to study the area-speed trade-off. Experimental results show the feasibility of the proposed implementation, which achieves a speed hundreds of times faster than the conventional Digital Signal Processor (DSP)-based control platform.


Sign in / Sign up

Export Citation Format

Share Document