EMFi material as wearable heart rate sensor for night time recordings

Author(s):  
Antti Vehkaoja ◽  
Timo Salpavaara ◽  
Jarmo Verho ◽  
Jukka Lekkala
Keyword(s):  
1991 ◽  
Vol 80 (3) ◽  
pp. 271-276 ◽  
Author(s):  
Henry Krum ◽  
William J. Louis ◽  
Douglas J. Brown ◽  
Graham P. Jackman ◽  
Laurence G. Howes

1. Measurement of blood pressure and heart rate over a 24 h period was peformed in 10 quadriplegic spinal cord injury patients and 10 immobilized, neurologically intact orthopaedic subjects by using the Spacelabs 90207 automated ambulatory monitoring system. 2. Systolic and diastolic blood pressure fell significantly at night in orthopaedic subjects but not in quadriplegic patients, and night-time blood pressures were similar in both groups. 3. Cumulative summation of differences from a reference value (cusum analysis) confirmed a markedly diminished diurnal blood pressure variation in the quadriplegic patients. 4. These findings could not be accounted for on the basis of blood pressure variations during chronic postural change. 5. Heart rate fell significantly at night in both groups. 6. The findings suggest that the increase in blood pressure during waking hours in neurologically intact subjects is a consequence of a diurnal variation in sympathetic activity (absent in quadriplegic patients with sympathetic decentralization) which is independent of changes in physical activity.


Author(s):  
Zhouchen Ma ◽  
Cheng Chen ◽  
Min Wang ◽  
Yang Zhao ◽  
Liang Ying ◽  
...  
Keyword(s):  

Author(s):  
Yibo Zhu ◽  
Rasik R Jankay ◽  
Laura C Pieratt ◽  
Ranjana K. Mehta

Extensive research has been conducted to study the effects of physical and sleep related fatigue on occupational health and safety. However, fatigue is a complex multidimensional construct, that is task- and occupation-dependent, and our knowledge on how to measure this complex construct is limited. A scoping review was conducted to: 1) review sensors and their metrics currently employed in occupational fatigue studies, 2) identify overlap between sensors and associated metrics that can be leveraged to assess comprehensive fatigue, 3) investigating the effectiveness of the sensors/metrics, and 4) recommended potential sensor/metric combinations to evaluate comprehensive fatigue. 512 unique abstracts were identified through Ovid-MEDLINE, MEDLINE, Embase and Cinal databases and application of the inclusion/exclusion criteria resulted in 27 articles that were included for the review. Heart rate sensors and actigraphs were identified to be the most suitable devices to study comprehensive fatigue. Heart rate trend within the heart rate sensor, and sleep length and sleep efficiency within actigraphs were found to be the most popular and reliable metrics for measuring occupational fatigue.


2010 ◽  
Vol 68 ◽  
pp. 480-480
Author(s):  
C Ward ◽  
J Teoh ◽  
M Grubb ◽  
J Crowe ◽  
B Hayes-Gill ◽  
...  

2021 ◽  
Vol 2111 (1) ◽  
pp. 012026
Author(s):  
Muhammad Irmansyah ◽  
Efrizon ◽  
Anggara Nasution ◽  
Era Madona

Abstract The aim of this research was applied a microcontroller, temperature sensor, weight sensor, heart rate sensor and GSM module to monitoring and notification of the condition of premature babies in portable incubators. The hardware used consists of a DS18B20 sensor, Load Cell, Pulse Heart Rate Sensor, Buzzer, LCD and SIM800L Module. The results showed the Pulse sensor and DS18B20 sensor could measure and detect the baby’s heart rate and baby temperature. The result was on the LCD with an average error of 4.354% for heartrate and 1.437% for temperature. The loadcell sensor can detect weight with an error of 2.16%. The duration of sending SMS to Smartphone is 8s for each delivery. SMS was sent if the baby weak and critical condition.


2021 ◽  
Author(s):  
Mateusz Soliński ◽  
Agnieszka Pawlak ◽  
Monika Petelczyc ◽  
Teodor Buchner ◽  
Joanna Aftyka ◽  
...  

Abstract SARS-Cov-2 infection, due to inflammation processes, can affect autonomic nervous system and heart rate variability (HRV) even after disease. Previous studies showed significant changes in HRV parameters in severe (including fatal) infection of SARS-Cov-2. However, HRV analysis for the asymptomatic or mild-symptomatic Covid-19 patients have not been reported. In this study, we suggested that there is an influence of a SARS-Cov-2 infection on the HRV in such patients after weeks form disease.Sixty-five ECG Holter recordings from young (mean age 22.6 ± 3.4 years), physically fit male subjects after 4-6 weeks from the second negative test (considered to be the beginning of recovery) and twenty-six control male subjects (mean age 23.2 ± 2.9 years) were considered in the study. Night-time RR time series were extracted from ECG signals. Selected linear, frequency as well as nonlinear HRV parameters were calculated. We found significant differences in Porta’s symbolic analysis parameters V0 and V2 (p<0.001), α2 (p<0.001), very low frequency component (VLF; p=0.022), and respiratory peak (from PRSA method; p=0.012). These differences may be caused by the changes of the parasympathetic autonomic nervous system as well as by the coupling of respiratory rhythm with heart rate due to an increase in pulmonary arterial vascular resistance.The results suggest that the changes in the HRV, thus autonomic nervous system, are measurable after a few weeks from the beginning of the recovery even in the post-Covid group of young and physically active population. We indicated HRV sensitive markers which could be used in the long-term monitoring of recovered patients.


Author(s):  
Junichiro Hayano ◽  
Emi Yuda

The prediction of the menstrual cycle phase and fertility window by easily measurable bio-signals is an unmet need and such technological development will greatly contribute to women's QoL. Although many studies have reported differences in autonomic indices of heart rate variability (HRV) between follicular and luteal phases, they have not yet reached the level that can predict the menstrual cycle phases. The recent development of wearable sensors-enabled heart rate monitoring during daily life. The long-term heart rate data obtained by them carry plenty of information, and the information that can be extracted by conventional HRV analysis is only a limited part of it. This chapter introduces comprehensive analyses of long-term heart rate data that may be useful for revealing their associations with the menstrual cycle phase.


2019 ◽  
Vol 8 ◽  
pp. 100075 ◽  
Author(s):  
Boris Fuchs ◽  
Kristin Marie Sørheim ◽  
Matteo Chincarini ◽  
Emma Brunberg ◽  
Solveig Marie Stubsjøen ◽  
...  

2017 ◽  
Vol 63 (Special Issue) ◽  
pp. S66-S72
Author(s):  
Kvíz Zděnek ◽  
Kroulík Milan

This article evaluates agricultural operator´s stress, mental strain and generally fighting with driving difficulties during operating agricultural machinery sets by means of a heart rate indicator. Different drivers driving different tractors with implements were chosen and evaluated during different field jobs, namely soil tillage and sowing. Machinery position on the field was precisely monitored by a GPS receiver and the heart beat rate was observed by means of a chest belt special device with a heart rate sensor. The output data from the sensors were monitored during conventional manual steering of the tractor-implement set and also when using the complete automatic guidance steering without any driver´s intervention to steering wheel – all by using the DGPS guidance signal. The data were further processed with a special software for the heart rate sensor and detailed statistical evaluation was performed. All described trials were measured at different farms in the Czech Republic. The final outcomes from the experiment showed a statistically significant difference between two experimental variants and confirm our hypothesis that the guidance systems bring a great benefit for drivers concerning mental strain and relief of their workload.


Sign in / Sign up

Export Citation Format

Share Document