Leakage Power Reduction for CMOS Combinational Circuits

Author(s):  
Xiaoying Zhao ◽  
Jiangfang Yi ◽  
Dong Tong ◽  
Xu Cheng
Author(s):  
G. SURESH ◽  
A.RAM KUMAR

In this paper, guarded evaluation is a dynamic power reduction technique by identifying sub circuits inputs and kept constant at specific times during circuit operation. In certain condition, some signals within the digital design are not observable at output. So make such signals as guarded (constant). There by reducing the dynamic power. Here we apply this technique for all digital circuits. The problem here is to find conditions under which a sub circuit input can be held constant with disturbing the main circuit functionally (correctness). Here we propose a solution for discovering the gating inputs based on inverting and non-inverting methods. By including “clock gating” we still reduce the dynamic power and leakage power especially for sequential circuits and also used to some small combinational circuits.


2018 ◽  
Vol 6 (2) ◽  
pp. 1
Author(s):  
SEKHAR REDDY M. CHANDRA ◽  
REDDY P. RAMANA ◽  
◽  

2005 ◽  
Vol 2 (3) ◽  
pp. 221-246 ◽  
Author(s):  
Yan Meng ◽  
Timothy Sherwood ◽  
Ryan Kastner

2018 ◽  
Vol 7 (2.7) ◽  
pp. 863
Author(s):  
Damarla Paradhasaradhi ◽  
Kollu Jaya Lakshmi ◽  
Yadavalli Harika ◽  
Busa Ravi Teja Sai ◽  
Golla Jayanth Krishna

In deep sub-micron technologies, high number of transistors is mounted onto a small chip area where, SRAM plays a vital role and is considered as a major part in many VLSI ICs because of its large density of storage and very less access time. Due to the demand of low power applications the design of low power and low voltage memory is a demanding task. In these memories majority of power dissipation depends on leakage power. This paper analyzes the basic 6T SRAM cell operation. Here two different leakage power reduction approaches are introduced to apply for basic 6T SRAM. The performance analysis of basic SRAM cell, SRAM cell using drowsy-cache approach and SRAM cell using clamping diode are designed at 130nm using Mentor Graphics IC Studio tool. The proposed SRAM cell using clamping diode proves to be a better power reduction technique in terms of power as compared with others SRAM structures. At 3.3V, power saving by the proposed SRAM cell is 20% less than associated to basic 6T SRAM Cell.


Sign in / Sign up

Export Citation Format

Share Document