The effects of flow rates to the concentration gradients in a passive micromixer low flow rate provides linear dilution of fluids

Author(s):  
Sargunan Sundra ◽  
Chin Fhong Soon ◽  
Nurfarina Zainal ◽  
Kian Sek Tee ◽  
Siew Hua Gan
2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Qian-Qian Wang ◽  
Bao-Hong Ping ◽  
Qing-Bo Xu ◽  
Wen Wang

This study investigates rheological effects of blood on steady flows in a nonplanar distal end-to-side anastomosis. The shear-thinning behavior of blood is depicted by a Carreau–Yasuda model and a modified power-law model. To explore effects of nonplanarity in vessel geometry, a curved bypass graft is considered that connects to the host artery with a 90deg out-of-plane curvature. Navier–Stokes equations are solved using a finite volume method. Velocity and wall shear stress (WSS) are compared between Newtonian and non-Newtonian fluids at different flow rates. At low flow rate, difference in axial velocity profiles between Newtonian and non-Newtonian fluids is significant and secondary flows are weaker for non-Newtonian fluids. At high flow rate, non-Newtonian fluids have bigger peak WSS and WSS gradient. The size of the flow recirculation zone near the toe is smaller for non-Newtonian fluids and the difference is significant at low flow rate. The nonplanar bypass graft introduces helical flow in the host vessel. Results from the study reveal that near the bed, heel, and toe of the anastomotic junction where intimal hyperplasia occurs preferentially, WSS gradients are all very big. At high flow rates, WSS gradients are elevated by the non-Newtonian effect of blood but they are reduced at low flow rates. At these locations, blood rheology not only affects the WSS and its gradient but also secondary flow patterns and the size of flow recirculation near the toe. This study reemphasizes that the rheological property of blood is a key factor in studying hemodynamic effects on vascular diseases.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Mustapha Hellou ◽  
Franck Lominé

Stokes flow in the branches of structured looped networks with successive identical square loops and T-junction branches is studied. Analytical expressions of the flow rate in the branches are determined for network of one, two, three, or four loops with junction head loss neglected relative to regular one. Then, a general expression of the flow rate is deduced for networks with more loops. This expression contains particularly a sequence of coefficients obeying to a recurrence formula. This sequence is a part of the fusion of Fibonacci and Tribonacci sequences. Furthermore, a general formula that expresses the quotient of flow rate in successive junction flow branches is given. The limit of this quotient for an infinite number of junction branches is found to be equal to 2+3. When the inlet and outlet flow rates are equal, this quotient obeys to a sequence of invariant numbers whatever the ratio of flow rate in the outlet branches is. Thus, the flow rate distribution for any configuration of inlet and outlet flow rates can be calculated. This study is also performed using Hardy–Cross method and a commercial solver of Navier-Stokes equation. The analytical results are approached very well with Hardy–Cross method. The numerical resolution agrees also with analytical results. However, the difference with the numerical results becomes significant for low flow rate in the junction branches. The flow streamlines are then determined for some inlet and outlet flow rate configurations. They particularly illustrate that recirculation flow takes place in branches of low flow rate.


2011 ◽  
Vol 674 ◽  
pp. 359-388 ◽  
Author(s):  
V. DOYEUX ◽  
T. PODGORSKI ◽  
S. PEPONAS ◽  
M. ISMAIL ◽  
G. COUPIER

The problem of the splitting of a suspension in bifurcating channels divided into two branches of non-equal flow rates is addressed. As has long been observed, in particular in blood flow studies, the volume fraction of particles generally increases in the high-flow-rate branch and decreases in the low-flow-rate branch. In the literature, this phenomenon is sometimes interpreted as the result of some attraction of the particles towards this high-flow-rate branch. In this paper, we focus on the existence of such an attraction through microfluidic experiments and two-dimensional simulations and show clearly that such an attraction does not occur but is, on the contrary, directed towards the low-flow-rate branch. Arguments for this attraction are given and a discussion on the sometimes misleading arguments found in the literature is given. Finally, the enrichment of particles in the high-flow-rate branch is shown to be mainly a consequence of the initial distribution in the inlet branch, which shows necessarily some depletion near the walls.


Author(s):  
Behrokh Abbasnejad ◽  
David McGloin ◽  
Lee Clemon

Abstract Direct low flow sensing is of interest to many applications in medical and biochemical industries. Low flow rate measurement is still challenging, and conventional flow sensors such as hot films, hot wires and Pitot probes are not capable of measuring very low flow rates accurately. In some applications that require flow measurement in a small diameter tubing (e.g. intravenous (IV) infusion), using such sensors also becomes mechanically impractical. Herein, a flexible laser-induced graphitic (LIG) piezoresistive flow sensor has been fabricated in a cost-effective single processing step. The capability of the LIG sensor in very low flow rate measurement has been investigated by embedding the sensor within an intravenous (IV) line. The embedded LIG hair-like sensor was tested at ambient temperature within the IV line at flow rates ranging from 0 m/s to 0.3 m/s (IV infusion free-flow rate). The LIG hair-like sensor presented in this study detects live flow rates of IV infusions with a threshold detection limit as low as 0.02 m/s. Moreover, the deformation of the LIG hair-like sensor that lead to resistance change in response to various flow rates is simulated using COMSOL Multiphysics.


1992 ◽  
Author(s):  
Masahiro Inoue ◽  
Motoo Kurdumaru ◽  
Youichi Anoo

The pressure fluctuations on the casing wall of two axial flow compressor rotors with various tip clearances have been analyzed by the use of two kinds of correlation functions. Behavior of the pressure fluctuation varies depending on tip clearance and blade solidity. In the case of small tip clearance, the nature of disturbances becomes random as the flow rate is reduced to a stall condition. For moderate tip clearance, coherent-structured disturbances appear intermittently at low flow rate. They appear more frequently as the solidity is increased and the flow rate becomes lower. For large tip clearance, the coherent structured disturbances exist even at considerably higher flow rates. Corresponding to these features there are peculiar patterns in the correlation designated as “phase-locked correlation function”.


1981 ◽  
Vol 27 (4) ◽  
pp. 455-457 ◽  
Author(s):  
Pierre Payment ◽  
Michel Trudel

A bypass system with a valve permits the use of low flow rate injecting proportioners, which are much less sensitive to back pressure buildup. The system can be used to condition water at flow rates of 1–15 L/min during sampling procedures for virological monitoring by the Wallis–Melnick method.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042199886
Author(s):  
Wenzhe Kang ◽  
Lingjiu Zhou ◽  
Dianhai Liu ◽  
Zhengwei Wang

Previous researches has shown that inlet backflow may occur in a centrifugal pump when running at low-flow-rate conditions and have nonnegligible effects on cavitation behaviors (e.g. mass flow gain factor) and cavitation stability (e.g. cavitation surge). To analyze the influences of backflow in impeller inlet, comparative studies of cavitating flows are carried out for two typical centrifugal pumps. A series of computational fluid dynamics (CFD) simulations were carried out for the cavitating flows in two pumps, based on the RANS (Reynolds-Averaged Naiver-Stokes) solver with the turbulence model of k- ω shear stress transport and homogeneous multiphase model. The cavity volume in Pump A (with less reversed flow in impeller inlet) decreases with the decreasing of flow rate, while the cavity volume in Pump B (with obvious inlet backflow) reach the minimum values at δ = 0.1285 and then increase as the flow rate decreases. For Pump A, the mass flow gain factors are negative and the absolute values increase with the decrease of cavitation number for all calculation conditions. For Pump B, the mass flow gain factors are negative for most conditions but positive for some conditions with low flow rate coefficients and low cavitation numbers, reaching the minimum value at condition of σ = 0.151 for most cases. The development of backflow in impeller inlet is found to be the essential reason for the great differences. For Pump B, the strong shearing between backflow and main flow lead to the cavitation in inlet tube. The cavity volume in the impeller decreases while that in the inlet tube increases with the decreasing of flow rate, which make the total cavity volume reaches the minimum value at δ = 0.1285 and then the mass flow gain factor become positive. Through the transient calculations for cavitating flows in two pumps, low-frequency fluctuations of pressure and flow rate are found in Pump B at some off-designed conditions (e.g. δ = 0.107, σ = 0.195). The relations among inlet pressure, inlet flow rate, cavity volume, and backflow are analyzed in detail to understand the periodic evolution of low-frequency fluctuations. Backflow is found to be the main reason which cause the positive value of mass flow gain factor at low-flow-rate conditions. Through the transient simulations of cavitating flow, backflow is considered as an important aspect closely related to the hydraulic stability of cavitating pumping system.


ORL ◽  
2021 ◽  
pp. 1-5
Author(s):  
Jingjing Liu ◽  
Tengfang Chen ◽  
Zhenggang Lv ◽  
Dezhong Wu

<b><i>Introduction:</i></b> In China, nasal cannula oxygen therapy is typically humidified. However, it is difficult to decide whether to suspend nasal cannula oxygen inhalation after the nosebleed has temporarily stopped. Therefore, we conducted a preliminary investigation on whether the use of humidified nasal cannulas in our hospital increases the incidence of epistaxis. <b><i>Methods:</i></b> We conducted a survey of 176,058 inpatients in our hospital and other city branches of our hospital over the past 3 years and obtained information concerning their use of humidified nasal cannulas for oxygen inhalation, nonhumidified nasal cannulas, anticoagulant and antiplatelet drugs, and oxygen inhalation flow rates. This information was compared with the data collected at consultation for epistaxis during these 3 years. <b><i>Results:</i></b> No significant difference was found between inpatients with humidified nasal cannulas and those without nasal cannula oxygen therapy in the incidence of consultations due to epistaxis (χ<sup>2</sup> = 1.007, <i>p</i> &#x3e; 0.05). The same trend was observed among hospitalized patients using anticoagulant and antiplatelet drugs (χ<sup>2</sup> = 2.082, <i>p</i> &#x3e; 0.05). Among the patients with an inhaled oxygen flow rate ≥5 L/min, the incidence of ear-nose-throat (ENT) consultations due to epistaxis was 0. No statistically significant difference was found between inpatients with a humidified oxygen inhalation flow rate &#x3c;5 L/min and those without nasal cannula oxygen therapy in the incidence of ENT consultations due to epistaxis (χ<sup>2</sup> = 0.838, <i>p</i> &#x3e; 0.05). A statistically significant difference was observed in the incidence of ENT consultations due to epistaxis between the low-flow nonhumidified nasal cannula and nonnasal cannula oxygen inhalation groups (χ<sup>2</sup> = 18.428, <i>p</i> &#x3c; 0.001). The same trend was observed between the 2 groups of low-flow humidified and low-flow nonhumidified nasal cannula oxygen inhalation (χ<sup>2</sup> = 26.194, <i>p</i> &#x3c; 0.001). <b><i>Discussion/Conclusion:</i></b> Neither high-flow humidified nasal cannula oxygen inhalation nor low-flow humidified nasal cannula oxygen inhalation will increase the incidence of recurrent or serious epistaxis complications; the same trend was observed for patients who use anticoagulant and antiplatelet drugs. Humidification during low-flow nasal cannula oxygen inhalation can prevent severe and repeated epistaxis to a certain extent.


Author(s):  
Xuwen Qiu ◽  
David Japikse ◽  
Mark Anderson

Flow recirculation at the impeller inlet and outlet is an important feature that affects impeller performance, especially the power consumption at a very low flow rate. Although the mechanisms for this flow phenomenon have been studied, a practical model is needed for meanline modeling of impeller off-design performance. In this paper, a meanline recirculation model is proposed. At the inlet, the recirculation zone acts as area blockage to relieve the large incidence of the active flow at a low flow rate. The size of the blockage is estimated through a critical area ratio of an artificial “inlet diffuser” from the inlet to throat. The intensity of the reverse flow can then be calculated by assuming a linear velocity profile of meridional velocity in the recirculation zone. At the impeller outlet, a recirculation zone near the suction surface is established to balance the velocity difference on the pressure and suction sides of the blade. The size and the intensity of the outlet recirculation zone is assumed related to blade loading, which can be evaluated based on flow turning and Coriolis force. A few validation cases are presented showing a good comparison between test data and prediction by the model.


2019 ◽  
Vol 36 (4) ◽  
pp. 401-410 ◽  
Author(s):  
Xiao-Qi Jia ◽  
Bao-Ling Cui ◽  
Zu-Chao Zhu ◽  
Yu-Liang Zhang

Abstract Affected by rotor–stator interaction and unstable inner flow, asymmetric pressure distributions and pressure fluctuations cannot be avoided in centrifugal pumps. To study the pressure distributions on volute and front casing walls, dynamic pressure tests are carried out on a centrifugal pump. Frequency spectrum analysis of pressure fluctuation is presented based on Fast Fourier transform and steady pressure distribution is obtained based on time-average method. The results show that amplitudes of pressure fluctuation and blade-passing frequency are sensitive to the flow rate. At low flow rates, high-pressure region and large pressure gradients near the volute tongue are observed, and the main factors contributing to the pressure fluctuation are fluctuations in blade-passing frequency and high-frequency fluctuations. By contrast, at high flow rates, fluctuations of rotating-frequency and low frequencies are the main contributors to pressure fluctuation. Moreover, at low flow rates, pressure near volute tongue increases rapidly at first and thereafter increases slowly, whereas at high flow rates, pressure decreases sharply. Asymmetries are observed in the pressure distributions on both volute and front casing walls. With increasing of flow rate, both asymmetries in the pressure distributions and magnitude of the pressure decrease.


Sign in / Sign up

Export Citation Format

Share Document