Developments of needle-lens probe intravital video-microscope-high resolution and high speed CCD camera systems

Author(s):  
S. Yamamori ◽  
Y. Ogasawara ◽  
O. Hiramatsu ◽  
T. Yada ◽  
M. Goto ◽  
...  
2003 ◽  
Author(s):  
Hidehiro Kume ◽  
Toshiyuki Kakihara ◽  
Haruhito Nakamura

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 127
Author(s):  
Jiali Jiang ◽  
Xin Zhou ◽  
Jiaying Liu ◽  
Likang Pan ◽  
Ziting Pan ◽  
...  

We propose an imaging method based on optical fiber bundle combined with micro-scanning technique for improving image quality without complex image reconstruction algorithms. In the proposed method, a piezoelectric-ceramic-chip is used as the micro-displacement driver of the optical fiber bundle, which has the advantages of small volume, fast response speed and high precision. The corresponding displacement of the optical fiber bundle can be generated by precise voltage controlling. An optical fiber bundle with core/cladding diameter 4/80 μm and hexagonal arrangement is used to scan the 1951 USAF target. The scanning step is 1 μm, which is equivalent to the diffraction limit resolution of the optical system. The corresponding information is recorded at high speed through photo-detectors and a high-resolution image is obtained by image stitching processing. The minimum distinguishable stripe width of the proposed imaging technique with piezoelectric-ceramic-chip driven micro-scanning is approximately 2.1 μm, which is 1 time higher than that of direct imaging with a CCD camera whose pixel size is close to the fiber core size. The experimental results indicate that the optical fiber bundle combined with piezoelectric-ceramic-chip driven micro-scanning is a high-speed and high-precision technique for high-resolution imaging.


2011 ◽  
Vol 17 (S2) ◽  
pp. 814-815
Author(s):  
Y Jia ◽  
B Mollon ◽  
P Mooney ◽  
M Pan ◽  
B McGinn ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


Author(s):  
Robert W. Mackin

This paper presents two advances towards the automated three-dimensional (3-D) analysis of thick and heavily-overlapped regions in cytological preparations such as cervical/vaginal smears. First, a high speed 3-D brightfield microscope has been developed, allowing the acquisition of image data at speeds approaching 30 optical slices per second. Second, algorithms have been developed to detect and segment nuclei in spite of the extremely high image variability and low contrast typical of such regions. The analysis of such regions is inherently a 3-D problem that cannot be solved reliably with conventional 2-D imaging and image analysis methods.High-Speed 3-D imaging of the specimen is accomplished by moving the specimen axially relative to the objective lens of a standard microscope (Zeiss) at a speed of 30 steps per second, where the stepsize is adjustable from 0.2 - 5μm. The specimen is mounted on a computer-controlled, piezoelectric microstage (Burleigh PZS-100, 68/μm displacement). At each step, an optical slice is acquired using a CCD camera (SONY XC-11/71 IP, Dalsa CA-D1-0256, and CA-D2-0512 have been used) connected to a 4-node array processor system based on the Intel i860 chip.


Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


Author(s):  
F. Hosokawa ◽  
Y. Kondo ◽  
T. Honda ◽  
Y. Ishida ◽  
M. Kersker

High-resolution transmission electron microscopy must attain utmost accuracy in the alignment of incident beam direction and in astigmatism correction, and that, in the shortest possible time. As a method to eliminate this troublesome work, an automatic alignment system using the Slow-Scan CCD camera has been introduced recently. In this method, diffractograms of amorphous images are calculated and analyzed to detect misalignment and astigmatism automatically. In the present study, we also examined diffractogram analysis using a personal computer and digitized TV images, and found that TV images provided enough quality for the on-line alignment procedure of high-resolution work in TEM. Fig. 1 shows a block diagram of our system. The averaged image is digitized by a TV board and is transported to a computer memory, then a diffractogram is calculated using an FFT board, and the feedback parameters which are determined by diffractogram analysis are sent to the microscope(JEM- 2010) through the RS232C interface. The on-line correction system has the following three modes.


Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


Sign in / Sign up

Export Citation Format

Share Document