Machine Learning for Location Prediction Using RSSI On Wi-Fi 2.4 GHz Frequency Band

Author(s):  
Ali Abdullah S. AlQahtani ◽  
Nazim Choudhury
2021 ◽  
Author(s):  
Stephanie Brandl ◽  
Niels Trusbak Haumann ◽  
Simjon Radloff ◽  
Sven Dähne ◽  
Leonardo Bonetti ◽  
...  

AbstractWe propose here (the informed use) of a customised, data-driven machine-learning pipeline to analyse magnetoencephalography (MEG) in a theoretical source space, with respect to the processing of a regular beat. This hypothesis- and data-driven analysis pipeline allows us to extract the maximally relevant components in MEG source-space, with respect to the oscillatory power in the frequency band of interest and, most importantly, the beat-related modulation of that power. Our pipeline combines Spatio-Spectral Decomposition as a first step to seek activity in the frequency band of interest (SSD, [1]) with a Source Power Co-modulation analysis (SPoC; [2]), which extracts those components that maximally entrain their activity with the given target function, that is here with the periodicity of the beat in the frequency domain (hence, f-SPoC). MEG data (102 magnetometers) from 28 participants passively listening to a 5-min long regular tone sequence with a 400 ms beat period (the “target function” for SPoC) were segmented into epochs of two beat periods each to guarantee a sufficiently long time window. As a comparison pipeline to SSD and f-SpoC, we carried out a state-of-the-art cluster-based permutation analysis (CBPA, [3]). The time-frequency analysis (TFA) of the extracted activity showed clear regular patterns of periodically occurring peaks and troughs across the alpha and beta band (8-20 Hz) in the f-SPoC but not in the CBPA results, and both the depth and the specificity of modulation to the beat frequency yielded a significant advantage. Future applications of this pipeline will address target the relevance to behaviour and inform analogous analyses in the EEG, in order to finally work toward addressing dysfunctions in beat-based timing and their consequences.Author summaryWhen listening to a regular beat, oscillations in the brain have been shown to synchronise with the frequency of that given beat. This phenomenon is called entrainment and has in previous brain-imaging studies been shown in the form of one peak and trough per beat cycle in a range of frequency bands within 15-25 Hz (beta band). Using machine-learning techniques, we designed an analysis pipeline based on Source-Power Co-Modulation (SPoC) that enables us to extract spatial components in MEG recordings that show these synchronisation effects very clearly especially across 8-20 Hz. This approach requires no anatomical knowledge of the individual or even the average brain, it is purely data driven and can be applied in a hypothesis-driven fashion with respect to the “function” that we expect the brain to entrain with and the frequency band within which we expect to see this entrainment. We here apply our customised pipeline using “f-SPoC” to MEG recordings from 28 participants passively listening to a 5-min long tone sequence with a regular 2.5 Hz beat. In comparison to a cluster-based permutation analysis (CBPA) which finds sensors that show statistically significant power modulations across participants, our individually extracted f-SPoC components find a much stronger and clearer pattern of peaks and troughs within one beat cycle. In future work, this pipeline can be implemented to tackle more complex “target functions” like speech and music, and might pave the way toward rhythm-based rehabilitation strategies.


Author(s):  
Theodoros Anagnostopoulos

Mobile context-aware applications are required to sense and react to changing environment conditions. Such applications, usually, need to recognize, classify, and predict context in order to act efficiently, beforehand, for the benefit of the user. In this chapter, the authors propose a mobility prediction model, which deals with context representation and location prediction of moving users. Machine Learning (ML) techniques are used for trajectory classification. Spatial and temporal on-line clustering is adopted. They rely on Adaptive Resonance Theory (ART) for location prediction. Location prediction is treated as a context classification problem. The authors introduce a novel classifier that applies a Hausdorff-like distance over the extracted trajectories handling location prediction. Two learning methods (non-reinforcement and reinforcement learning) are presented and evaluated. They compare ART with Self-Organizing Maps (SOM), Offline kMeans, and Online kMeans algorithms. Their findings are very promising for the use of the proposed model in mobile context aware applications.


The aim of indoor localization is to locate the objects inside a location wirelessly. This paper reports the models that predict the location along with floor and coordinates from the WAPs (Web Access Points) signal strengths of a user who connects to the internet at a specific location which had three locations. Starting with the cleaning of data, then assigning attributes into proper data types, making subset of dataset for each location, examining each column, and normalizing WAPs rows in order to build models. Different algorithms have been used to predict the location, floor, and coordinates of a logged in user. The models that have been used in this paper are k-Nearest Neighbor (k-NN) for location prediction, random forest for floor prediction and regression with k-NN for coordinate prediction.


A vast availability of location based user data which is generated everyday whether it is GPS data from online cabs, or weather time series data, is essential in many ways to the user and has been applied to many real life applications such as location targeted-advertising, recommendation systems, crime-rate detection, home trajectory analysis etc. In order to analyze this data and use it to fruitfulness a vast majority of prediction models have been proposed and utilized over the years. A next location prediction model is a model that uses this data and can be designed as a combination of two or more models and techniques, but these have their own pros and cons. The aim of this document is to analyze and compare the various machine learning models and related experiments that can be applied for better location prediction algorithms in the near future. The paper is organized in a way so as to give readers insights and other noteworthy points and inferences from the papers surveyed. A summary table has been presented to get a glimpse of the methods in depth and our added inferences along with the data-sets analyzed.


Sign in / Sign up

Export Citation Format

Share Document