Predictive torque control of induction motor based on improved fuzzy control method

Author(s):  
Mohammad Javad Lesani ◽  
Hamid Mahmoudi ◽  
Masoud Ebrahim ◽  
Seighalani Varzali ◽  
Davood Arab khaburi
2011 ◽  
Vol 328-330 ◽  
pp. 2172-2180 ◽  
Author(s):  
Zhi Long Xing ◽  
Yang Liu ◽  
Yun Feng Liu

Aiming to solve the energy saving problem in modern electric vehicle, we propose a motor-generator integration control system based on the induction motor and the fuzzy control theory in this paper. A motor-generator hardware platform is built up using the four quadrant characteristic of AC induction motor. The AC induction motor works both as driving motor of the electric vehicle and as well as the energy recovery generator. Specifically, the fuzzy direct torque control strategy is adopted in the motor state, and fuzzy instantaneous torque control strategy in power generation state. A simulation is carried out to analyze the practicality of the proposed control method, the simulation results show that the fuzzy torque control technology is well performed. Finally, a simulative energy recovery experimental platform is built up to test the proposed integration control system, and results shown that the efficiency of energy recovery could be up to 97.3%.


2014 ◽  
Vol 573 ◽  
pp. 155-160
Author(s):  
A. Pandian ◽  
R. Dhanasekaran

This paper presents improved Fuzzy Logic Controller (FLC) of the Direct Torque Control (DTC) of Three-Phase Induction Motor (IM) for high performance and torque control industrial drive applications. The performance of the IM using PI Controllers and general fuzzy controllers are meager level under load disturbances and transient conditions. The FLC is extended to have a less computational burden which makes it suitable for real time implementation particularly at constant speed and torque disturbance operating conditions. Hybrid control has advantage of integrating a superiority of two or more control techniques for better control performances. A fuzzy controller offers better speed responses for startup and large speed errors. If the nature of the load torque is varied, the steady state speed error of DTC based IM drive with fuzzy logic controller becomes significant. To improve the performance of the system, a new control method, Hybrid fuzzy PI control is proposed. The effectiveness of proposed method is verified by simulation based on MATLAB. The proposed Hybrid fuzzy controller has adaptive control over load toque variation and can maintain constant speed.


ELKHA ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 122
Author(s):  
Andri Pradipta ◽  
Santi Triwijaya ◽  
Mohamad Ridwan

Induction motors are widely used in industrial processes, vehicles and automation. Three-phase induction motors can be used for traction systems on electric locomotives. In this case, the speed control system is an important thing that must be applied to the propulsion system. This study aimed to test the indirect torque control for a Three-phase induction motor. A proportional integral (PI) controller was applied for speed controller. The indirect torque control system was modeled and simulated using PSIM software. According to the result, the control method showed a good performance. The speed could be maintained even the speed reference was changing or a load was applied. The steady state error of the speed response was just 0.1% with rise time around 0.06 s. The stator current went up to 39.5 A in starting condition. The stator current reached 12 A rms when the load of 10 Nm was applied. Then, the current rose to 15.7 A rms when the load was increased to 40 Nm and the current came down to 12.8 A rms when the load was decreased to 20 Nm.


Author(s):  
Hala Alami Aroussi ◽  
Elmostafa Ziani ◽  
Manale Bouderbala ◽  
Badre Bossoufi

<span>This work is dedicated to the study of an improved direct torque control of the doubly fed induction motor (DFIM). The control method adopts direct torque control 'DTC' because of its various advantages like the ease of implementation which allows a good performance at transient and steady state without PI regulators and rotating coordinate transformations. To do this, the modeling of the motor is performed. Subsequently, an explanation of the said command is spread out as well as the principle of adjusting the flux and the electromagnetic torque according to the desired speed. Then, the estimation method of these two control variables will be presented as well as the adopted switching table of the hysteresis controller model used based on the model of the multilevel inverters. Finally, the robustness of the developed system will be analyzed with validation in Matlab/Simulink environment to illustrate the performance of this control.</span>


Author(s):  
Najib El Ouanjli ◽  
Aziz Derouich ◽  
Abdelaziz El Ghzizal ◽  
Mohammed Taoussi ◽  
Youness El Mourabit ◽  
...  

Abstract This article presents the direct torque control (DTC) strategy for the doubly fed induction motor (DFIM) connected to two three-level voltage source inverters (3LVSIs) with neutral point clamped (NPC) structure. This control method allows to reduce the torque and flux ripples as well as to optimize the total harmonic distortion (THD) of motor currents. The use of 3LVSI increases the number of generated voltage, which allows improving the quality of its waveform and thus improves the DTC strategy. The system modeling and control are implemented in Matlab/Simulink environment. The analysis of simulation results shows the better performances of this control, especially in terms of torque and flux behavior, compared to conventional DTC.


2020 ◽  
Vol 7 (2) ◽  
Author(s):  
Mokh. Suseno Aji Sari ◽  
Hadi Suyono ◽  
Abraham Lomi

This research was conducted to regulate the three phase induction motor speed regulation system. Changes in load on the motor affect the motor speed response so it does not match the set point speed. This study uses the Direct Torque Control (DTC) method in regulating the speed of an induction motor. The DTC method is a vector control method that is directly assigned to the inverter. DTC method in controlling speed based on Proportional Integral Differential (PID) control. Determination of PID tunning using two methods, namely, ziegler-nichols and cohen-coon method. The ziegler-nichols method have overshoot speeds starting at 0.8% of the setpoint, whereas using the cohen coon method there is no overshoot and the speed at stable conditions matches the setpoint.


Sign in / Sign up

Export Citation Format

Share Document