2021 ◽  
Vol 11 (3) ◽  
pp. 1115
Author(s):  
Aleš Bezděk ◽  
Jakub Kostelecký ◽  
Josef Sebera ◽  
Thomas Hitziger

Over the last two decades, a small group of researchers repeatedly crossed the Greenland interior skiing along a 700-km long route from east to west, acquiring precise GNSS measurements at exactly the same locations. Four such elevation profiles of the ice sheet measured in 2002, 2006, 2010 and 2015 were differenced and used to analyze the surface elevation change. Our goal is to compare such locally measured GNSS data with independent satellite observations. First, we show an agreement in the rate of elevation change between the GNSS data and satellite radar altimetry (ERS, Envisat, CryoSat-2). Both datasets agree well (2002–2015), and both correctly display local features such as an elevation increase in the central part of the ice sheet and a sharp gradual decline in the surface heights above Jakobshavn Glacier. Second, we processed satellite gravimetry data (GRACE) in order for them to be comparable with local GNSS measurements. The agreement is demonstrated by a time series at one of the measurement sites. Finally, we provide our own satellite gravimetry (GRACE, GRACE-FO, Swarm) estimate of the Greenland mass balance: first a mild decrease (2002–2007: −210 ± 29 Gt/yr), then an accelerated mass loss (2007–2012: −335 ± 29 Gt/yr), which was noticeably reduced afterwards (2012–2017: −178 ± 72 Gt/yr), and nowadays it seems to increase again (2018–2019: −278 ± 67 Gt/yr).


1989 ◽  
Vol 35 (121) ◽  
pp. 406-417 ◽  
Author(s):  
Niels Reeh

AbstractSimple analytical models are developed in order to study how up-stream variations in accumulation rate and ice thickness, and horizontal convergence/ divergence of the flow influence the age and annual layer-thickness profiles in a steady-state ice sheet. Generally, a decrease/increase of the accumulation rate and an increase/decrease of the ice thickness in the up-stream direction (i.e. opposite to the flow direction) results in older/younger ice at a given depth in the ice sheet than would result if the up-stream accumulation rate and ice thickness were constant along the flow line.Convergence/divergence of the up-stream flow will decrease/increase the effect of the accumulation-rate and ice-thickness gradients, whereas convergence/divergence has no influence at all on the age and layer-thickness profiles if the up-stream accumulation rate and ice thickness are constant along the flow line.A modified column-flow model, i.e. a model for which the strain-rate profile (or, equivalently, the horizontal velocity profile) is constant down to the depth corresponding to the Holocene/Wisconsinan transition 10 750 year BP., seems to work well for dating the ice back to 10 000–11 000 year B P. at sites in the slope regions of the Greenland ice sheet. For example, the model predicts the experimentally determined age profile at Dye 3 on the south Greenland ice sheet with a relative root-mean-square error of only 3% back to c. 10 700 year B.P. As illustrated by the Milcent location on the western slope of the central Greenland ice sheet, neglecting up-stream accumulation-rate and ice-thickness gradients, may lead to dating errors as large as 3000–000 years for c. 10 000 year old ice.However, even if these gradients are taken into account, the simple model fails to give acceptable ages for 10 000 year old ice at locations on slightly sloping ice ridges with strongly divergent flow, as for example the Camp Century location. The main reason for this failure is that the site of origin of the ice cannot be determined accurately enough by the simple models, if the flow is strongly divergent.With this exception, the simple models are well suited for dating the ice at locations where the available data or the required accuracy do not justify application of elaborate numerical models. The formulae derived for the age-depth profiles can easily be worked out on a pocket calculator, and in many cases will be a sensible alternative to using numerical flow models.


1988 ◽  
Vol 11 ◽  
pp. 219
Author(s):  
Shinji Mae

The Japanese Antarctic Research Expedition (JARE) has conducted glaciological studies on Mizuho Plateau since 1981. We have already reported that the ice sheet flowing from Mizuho Plateau into Shirase Glacier is thinning at a rate of about 70 cm/year and that the profile of the distribution of basal shear stress is similar to that of surging glaciers. A 5 year glaciological programme on Mizuho Plateau and in east Queen Maud Land is now being carried out and we have obtained the following new results: (1) The ice sheet in the down-stream region (where ice elevation is lower than about 2400 m) is thinning, based on measurements of horizontal and vertical flow velocity, strain-rate, the slope of the ice surface, the accumulation rate and densification of snow. (2) δ18O analysis of deep ice cores obtained at Mizuho Station (2240 m a.s.l.) and point G2 (1730 m a.s.l.) shows that δ18O increased about 200 years ago at Mizuho Station and about 400 years ago at point G2. If we can assume that the increase in δ18O is caused by the thinning of the ice sheet, then this result means that this thinning propagates to up-stream areas. (3) Radio-echo-sounding measurements on Mizuho Plateau show that the ice base in the down-stream region is wet. This supports the result described in (1), since the basal sliding due to a wet base causes ice-sheet thinning, as proposed in our previous studies. In summary, a possible explanation of ice-sheet variation on Mizuho Plateau is as follows: the thinning of the ice sheet, caused by the basal sliding due to basal ice melting, started at Shirase Glacier and has been propagating up-stream to reach its present position. A simple calculation, using flow velocities, shows that the thinning started at Shirase Glacier about 1500–2000 years ago.


1997 ◽  
Vol 24 ◽  
pp. 409-414 ◽  
Author(s):  
Robert Bindschadler

Ice Streams B, D and E, West Antarctica, all show a longitudinal pattern of ice thickness change that is consistent with ongoing surge behavior modeled for glaciers. The measured pattern is not consistent with model response of any other scenario such as accumulation-rate change or changes on the ice shelf. Inland migration of the ice-stream onset is a requirement of this behavior pattern. If such a surge is presently taking place, the remaining lifetime of the West Antarctic ice sheet is 1200–6000 years. A complete surge period lasting 50 000–120 000 years is hypothesized, with a relatively brief surge phase (lasting 16000–21 000 years) required to completely remove the West Antarctic ice sheet from its maximum extent. Applying classic glacier response theory demonstrates that the diffusive component of response is much faster for ice streams than for glaciers, making the identification of either kinematic waves or localized responses on ice streams unlikely.


2018 ◽  
Vol 843 ◽  
pp. 748-777 ◽  
Author(s):  
T. E. Mulder ◽  
S. Baars ◽  
F. W. Wubs ◽  
H. A. Dijkstra

It is well known that deterministic two-dimensional marine ice sheets can only be stable if the grounding line is positioned at a sufficiently steep, downward sloping bedrock. When bedrock conditions favour instabilities, multiple stable ice sheet profiles may occur. Here, we employ continuation techniques to examine the sensitivity of a two-dimensional marine ice sheet to stochastic noise representing short time scale variability, either in the accumulation rate or in the sea level height. We find that in unique regimes, the position of the grounding line is most sensitive to noise in the accumulation rate and can explain excursions observed in field measurements. In the multiple equilibrium regime, there is a strong asymmetry in transition probabilities between the different ice sheet states, with a strong preference to switch to the branch with a steeper bedrock slope.


1987 ◽  
Vol 9 ◽  
pp. 253
Author(s):  
N. Young ◽  
I. Goodwin

Ground surveys of the ice sheet in Wilkes Land, Antarctica, have been made on oversnow traverses operating out of Casey. Data collected include surface elevation, accumulation rate, snow temperature, and physical characteristics of the snow cover. By the nature of the surveys, the data are mostly restricted to line profiles. In some regions, aerial surveys of surface topography have been made over a grid network. Satellite imagery and remote sensing are two means of extrapolating the results from measurements along lines to an areal presentation. They are also the only source of data over large areas of the continent. Landsat images in the visible and near infra-red wavelengths clearly depict many of the large- and small scale features of the surface. The intensity of the reflected radiation varies with the aspect and magnitude of the surface slope to reveal the surface topography. The multi-channel nature of the Landsat data is exploited to distinguish between different surface types through their different spectral signatures, e.g. bare ice, glaze, snow, etc. Additional information on surface type can be gained at a coarser scale from other satellite-borne sensors such as ESMR, SMMR, etc. Textural enhancement of the Landsat images reveals the surface micro-relief. Features in the enhanced images are compared to ground-truth data from the traverse surveys to produce a classification of surface types across the images and to determine the magnitude of the surface topography and micro-relief observed. The images can then be used to monitor changes over time.


1985 ◽  
Vol 31 (108) ◽  
pp. 198-200 ◽  
Author(s):  
Niels Reeh ◽  
Niels S. Gundestrup

AbstractThe mass balance of the Greenland ice sheet at Dye 3 is estimated on the basis of observations of ice thickness, accumulation rate, surface velocities, and surface strain-rates. The calculations indicate a rate of increase of surface elevation of 3 cm/year, with 95% confidence limits of −3 cm/year and +9 cm/year. Previous estimates of the mass balance of the Greenland ice sheet by the same method reported large imbalances; these are most probably due to lack of precise data and the use of quantities measured at the surface as representative of depth-averaged quantities. The most reliable observations indicate that the interior regions of the Greenland ice sheet are at present thickening at a rate of a few centimetres per year; a contributing cause for this may be the slow thinning of a bottom layer of relatively soft Wisconsin ice.


2008 ◽  
Vol 48 ◽  
pp. 177-182 ◽  
Author(s):  
H.C. Steen-Larsen ◽  
D. Dahl-Jensen

AbstractA simple combined heat and ice-sheet model has been used to calculate temperatures at the base of the Laurentide ice sheet. We let the ice sheet surge when the basal temperature reaches the pressure-melting temperature. Driving the system with the observed accumulation and temperature records from the GRIP ice core, Greenland, produces surges corresponding to the observed Heinrich events. This suggests that the mechanism of basal sliding, initiated when the basal temperature reaches the melting point, can explain the surges of the Laurentide ice sheet. This study highlights the importance of the surface temperature and accumulation rate as a means of forcing the timing and strength of the Heinrich events, thus implying important ice-sheet climate feedbacks.


2020 ◽  
Vol 61 (81) ◽  
pp. 225-233 ◽  
Author(s):  
Lynn Montgomery ◽  
Lora Koenig ◽  
Jan T. M. Lenaerts ◽  
Peter Kuipers Munneke

AbstractSince the year 2000, Greenland ice sheet mass loss has been dominated by a decrease in surface mass balance rather than an increase in solid ice discharge. Southeast Greenland is an important region to understand how high accumulation rates can offset increasing Greenland ice sheet meltwater runoff. To that end, we derive a new 9-year long dataset (2009–17) of accumulation rates in Southeast Greenland using NASA Operation IceBridge snow radar. Our accumulation dataset derived from internal layers focuses on high elevations (1500–3000 m) because at lower elevations meltwater percolation obscured internal layer structure. The uncertainty of the radar-derived accumulation rates is 11% [using Firn Densification Model (FDM) density profiles] and the average accumulation rate ranges from 0.5 to 1.2 m w.e. With our observations spanning almost a decade, we find large inter-annual variability, but no significant trend. Accumulation rates are compared with output from two regional climate models (RCMs), MAR and RACMO2. This comparison shows that the models are underestimating accumulation in Southeast Greenland and the models misrepresent spatial heterogeneity due to an orographically forced bias in snowfall near the coast. Our dataset is useful to fill in temporal and spatial data gaps, and to evaluate RCMs where few in situ measurements are available.


Sign in / Sign up

Export Citation Format

Share Document