The 2015 Calbuco Volcanic Cloud Detection Using GNSS Radio Occultation and Satellite Lidar

Author(s):  
Pierre-Yves Tournigand ◽  
Valeria Cigala ◽  
Alfredo J. Prata ◽  
Andrea K. Steiner ◽  
Gottfried Kirchengast ◽  
...  
Author(s):  
Jeana Mascio ◽  
Stephen S. Leroy ◽  
Robert P. d’Entremont ◽  
Thomas Connor ◽  
E. Robert Kursinski

AbstractRadio occultation (RO) measurements have little direct sensitivity to clouds, but recent studies have shown that they may have an indirect sensitivity to thin, high clouds that are difficult to detect using conventional passive space-based cloud sensors. We implement two RO-based cloud detection (ROCD) algorithms for atmospheric layers in the middle and upper troposphere. The first algorithm is based on the methodology of a previous study, which explored signatures caused by upper tropospheric clouds in RO profiles according to retrieved relative humidity, temperature lapse rate, and gradients in log-refractivity (ROCD-P), and the second is based on inferred relative humidity alone (ROCD-M). In both, atmospheric layers are independently predicted as cloudy or clear based on observational data, including high performance RO retrievals. In a demonstration, we use data from 10 days spanning seven months in 2020 of FORMOSAT-7/COSMIC-2. We use the forecasts of NOAA GFS to aid in the retrieval of relative humidity. The prediction is validated with a cloud truth dataset created from the imagery of the GOES-16 Advanced Baseline Imager (ABI) satellite and the GFS three-dimensional analysis of cloud state conditions. Given these two algorithms for the presence or absence of clouds, confusion matrices and receiver operating characteristic (ROC) curves are used to analyze how well these algorithms perform. The ROCD-M algorithm has a balanced accuracy, which defines the quality of the classification test that considers both the sensitivity and specificity, greater than 70% for all altitudes between 6 and 10.25 km.


Atmosphere ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 199 ◽  
Author(s):  
Fred Prata ◽  
Mervyn Lynch

Current Earth Observation (EO) satellites provide excellent spatial, temporal and spectral coverage for passive measurements of atmospheric volcanic emissions. Of particular value for ash detection and quantification are the geostationary satellites that now carry multispectral imagers. These instruments have multiple spectral channels spanning the visible to infrared (IR) wavelengths and provide 1 × 1 km2 to 4 × 4 km2 resolution data every 5–15 min, continuously. For ash detection, two channels situated near 11 and 12 μ m are needed; for ash quantification a third or fourth channel also in the infrared is useful for constraining the height of the ash cloud. This work describes passive EO infrared measurements and techniques to determine volcanic cloud properties and includes examples using current methods with an emphasis on the main difficulties and ways to overcome them. A challenging aspect of using satellite data is to design algorithms that make use of the spectral, temporal (especially for geostationary sensors) and spatial information. The hyperspectral sensor AIRS is used to identify specific molecules from their spectral signatures (e.g., for SO2) and retrievals are demonstrated as global, regional and hemispheric maps of AIRS column SO2. This kind of information is not available on all sensors, but by combining temporal, spatial and broadband multi-spectral information from polar and geo sensors (e.g., MODIS and SEVIRI) useful insights can be made. For example, repeat coverage of a particular area using geostationary data can reveal temporal behaviour of broadband channels indicative of eruptive activity. In many instances, identifying the nature of a pixel (clear, cloud, ash etc.) is the major challenge. Sophisticated cloud detection schemes have been developed that utilise statistical measures, physical models and temporal variation to classify pixels. The state of the art on cloud detection is good, but improvements are always needed. An IR-based multispectral cloud identification scheme is described and some examples shown. The scheme is physically based but has deficiencies that can be improved during the daytime by including information from the visible channels. Physical retrieval schemes applied to ash detected pixels suffer from a lack of knowledge of some basic microphysical and optical parameters needed to run the retrieval models. In particular, there is a lack of accurate spectral refractive index information for ash particles. The size distribution of fine ash (1–63 μ m, diameter) is poorly constrained and more measurements are needed, particularly for ash that is airborne. Height measurements are also lacking and a satellite-based stereoscopic height retrieval is used to illustrate the value of this information for aviation. The importance of water in volcanic clouds is discussed here and the separation of ice-rich and ash-rich portions of volcanic clouds is analysed for the first time. More work is required in trying to identify ice-coated ash particles, and it is suggested that a class of ice-rich volcanic cloud be recognized and termed a ‘volcanic ice’ cloud. Such clouds are frequently observed in tropical eruptions of great vertical extent (e.g., 8 km or higher) and are often not identified correctly by traditional IR methods (e.g., reverse absorption). Finally, the global, hemispheric and regional sampling of EO satellites is demonstrated for a few eruptions where the ash and SO 2 dispersed over large distances (1000s km).


Atmosphere ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 418 ◽  
Author(s):  
Elżbieta Lasota ◽  
Witold Rohm ◽  
Chian-Yi Liu ◽  
Paweł Hordyniec

Tropical cyclones (TC) are one of the main producers of clouds in the tropics and subtropics. Hence, most of the clouds in TCs are dense, with large water and ice content, and provide conditions conducive to investigate clouds’ impact on Radio Occultation (RO) measurements. Although the RO technique is considered insensitive to clouds, recent studies show a refractivity positive bias in cloudy conditions. In this study, we analyzed the RO bending angle sensitivity to cloud content during tropical cyclone seasons between 2007 and 2010. Thermodynamic parameters were obtained from the ERA-Interim reanalysis, whereas the water and ice cloud contents were retrieved from the CloudSat profiles. Our experiments confirm the positive mean RO refractivity bias in cloudy conditions that reach up to more than 0.5% at the geometric height of around 7 km. A similar bias but larger and shifted up is visible in bending angle anomaly (1.6%). Our results reveal that the influence of clouds is significant and can exceed the RO bending angle standard deviation for 21 out of 50 (42%) investigated profiles. Mean clouds’ impact is detectable between 9.0 and 10.5 km, while, in the case of single events, clouds in most of the observations are significant between 8 and 14 km. Almost 15% of the detectable clouds reach 16 km height, while the influence of the clouds below 5 km is insignificant. For more than half of the significant cases, the detection range is less than 3 km but for one observation this range spreads to 7–8 km.


2016 ◽  
Author(s):  
Riccardo Biondi ◽  
Andrea Steiner ◽  
Gottfried Kirchengast ◽  
Hugues Brenot ◽  
Therese Rieckh

Abstract. The volcanic cloud top altitude and the atmospheric thermal structure after volcanic eruptions are studied using Global Positioning System (GPS) Radio Occultation (RO) profiles co-located with independent radiometric measurements of ash and SO2 clouds. We use the GPS RO data to detect volcanic clouds and to analyze their impact on climate in terms of temperature changes. We selected about 1300 GPS RO profiles co-located with two representative eruptions (Puyehue 2011, Nabro 2011) and found that an anomaly technique recently developed for detecting cloud tops of convective systems can also be applied to volcanic clouds. Analyzing the atmospheric thermal structure after the eruptions, we found clear cooling signatures of volcanic cloud tops in the upper troposphere for the Puyehue case. The impact of Nabro lasted for several months, suggesting that the cloud reached the stratosphere, where a significant warming occurred. The results are encouraging for future routine use of RO data for monitoring volcanic clouds.


2004 ◽  
Vol 91 (1) ◽  
pp. 27-46 ◽  
Author(s):  
Andrew Tupper ◽  
Simon Carn ◽  
Jason Davey ◽  
Yasuhiro Kamada ◽  
Rodney Potts ◽  
...  

2019 ◽  
Vol 11 (19) ◽  
pp. 2199 ◽  
Author(s):  
Valeria Cigala ◽  
Riccardo Biondi ◽  
Alfredo J. Prata ◽  
Andrea K. Steiner ◽  
Gottfried Kirchengast ◽  
...  

The products of explosive volcanic eruptions, in particular, volcanic ash, can pose a severe hazard to, for example, international aviation. Detecting volcanic clouds and monitoring their dispersal is hence, the subject of intensive current research. However, the discrepancies between the different available methods lead to detected cloud altitude with significant uncertainties. Here we show the results of an algorithm developed explicitly for high vertical resolution detection of volcanic cloud altitude by using the Global Navigation Satellite System radio occultation (RO) observations. Analyzing the energetic Kasatochi eruption of August 2008 in a case study, we find the volcanic cloud altitudes detected with RO in good agreement (within ~1 km) with cloud altitude estimations from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) lidar backscatter images in the 4 h range between RO and CALIOP acquisitions. The tracking by combined RO and imaging of the volcanic cloud evolution during the weeks after the eruption indicates a promising potential for operational global cloud altitude monitoring.


2006 ◽  
Vol 23 (11) ◽  
pp. 1422-1444 ◽  
Author(s):  
Michael J. Pavolonis ◽  
Wayne F. Feltz ◽  
Andrew K. Heidinger ◽  
Gregory M. Gallina

Abstract An automated volcanic cloud detection algorithm that utilizes four spectral channels (0.65, 3.75, 11, and 12 μm) that are common among several satellite-based instruments is presented. The new algorithm is physically based and globally applicable and can provide quick information on the horizontal location of volcanic clouds that can be used to improve real-time ash hazard assessments. It can also provide needed input into volcanic cloud optical depth and particle size retrieval algorithms, the products of which can help improve ash dispersion forecasts. The results of this new four-channel algorithm for several scenes were compared to a threshold-based reverse absorption algorithm, where the reverse absorption algorithm is used to identify measurements with a negative 11–12-μm brightness temperature difference. The results indicate that the new four-channel algorithm is not only more sensitive to the presence of volcanic clouds but also generally less prone to false alarms than the standard reverse absorption algorithm. The greatest impact on detection sensitivity is seen in the Tropics, where water vapor can often mask the reverse absorption signal. The four-channel algorithm was able to detect volcanic clouds even when the 11–12-μm brightness temperature difference was greater than +2 K. In the higher latitudes, the greatest impact seen was the significant reduction in false alarms compared to the reverse absorption algorithm and the improved ability to detect optically thick volcanic clouds. Cloud water can also mask the reverse absorption signal. The four-channel algorithm was shown to be more sensitive to volcanic clouds that have a water (ice or liquid water) component than the reverse absorption algorithm.


Author(s):  
Yueqiang Sun ◽  
Congliang Liu ◽  
Weihua Bai ◽  
Yan Liu ◽  
Qifei Du ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document