Small Ship Detection via Deformable Convolutional Network

Author(s):  
Yao Wang ◽  
Ganggang Dong ◽  
Hongwei Liu
2020 ◽  
Vol 130 ◽  
pp. 104812 ◽  
Author(s):  
Zhijun Chen ◽  
Depeng Chen ◽  
Yishi Zhang ◽  
Xiaozhao Cheng ◽  
Mingyang Zhang ◽  
...  

Author(s):  
Wilder Nina ◽  
William Condori ◽  
Vicente Machaca ◽  
Juan Villegas ◽  
Eveling Castro

2021 ◽  
Vol 13 (16) ◽  
pp. 3059
Author(s):  
Jianming Hu ◽  
Xiyang Zhi ◽  
Tianjun Shi ◽  
Wei Zhang ◽  
Yang Cui ◽  
...  

The YOLO network has been extensively employed in the field of ship detection in optical images. However, the YOLO model rarely considers the global and local relationships in the input image, which limits the final target prediction performance to a certain extent, especially for small ship targets. To address this problem, we propose a novel small ship detection method, which improves the detection accuracy compared with the YOLO-based network architecture and does not increase the amount of computation significantly. Specifically, attention mechanisms in spatial and channel dimensions are proposed to adaptively assign the importance of features in different scales. Moreover, in order to improve the training efficiency and detection accuracy, a new loss function is employed to constrain the detection step, which enables the detector to learn the shape of the ship target more efficiently. The experimental results on a public and high-quality ship dataset indicate that our method realizes state-of-the-art performance in comparison with several widely used advanced approaches.


2019 ◽  
Vol 11 (24) ◽  
pp. 2997 ◽  
Author(s):  
Clément Dechesne ◽  
Sébastien Lefèvre ◽  
Rodolphe Vadaine ◽  
Guillaume Hajduch ◽  
Ronan Fablet

The monitoring and surveillance of maritime activities are critical issues in both military and civilian fields, including among others fisheries’ monitoring, maritime traffic surveillance, coastal and at-sea safety operations, and tactical situations. In operational contexts, ship detection and identification is traditionally performed by a human observer who identifies all kinds of ships from a visual analysis of remotely sensed images. Such a task is very time consuming and cannot be conducted at a very large scale, while Sentinel-1 SAR data now provide a regular and worldwide coverage. Meanwhile, with the emergence of GPUs, deep learning methods are now established as state-of-the-art solutions for computer vision, replacing human intervention in many contexts. They have been shown to be adapted for ship detection, most often with very high resolution SAR or optical imagery. In this paper, we go one step further and investigate a deep neural network for the joint classification and characterization of ships from SAR Sentinel-1 data. We benefit from the synergies between AIS (Automatic Identification System) and Sentinel-1 data to build significant training datasets. We design a multi-task neural network architecture composed of one joint convolutional network connected to three task specific networks, namely for ship detection, classification, and length estimation. The experimental assessment shows that our network provides promising results, with accurate classification and length performance (classification overall accuracy: 97.25%, mean length error: 4.65 m ± 8.55 m).


2019 ◽  
Vol 9 (18) ◽  
pp. 3786 ◽  
Author(s):  
Yongsong Li ◽  
Zhengzhou Li ◽  
Yong Zhu ◽  
Bo Li ◽  
Weiqi Xiong ◽  
...  

The existing thermal infrared (TIR) ship detection methods may suffer serious performance degradation in the situation of heavy sea clutter. To cope with this problem, a novel ship detection method based on morphological reconstruction and multi-feature analysis is proposed in this paper. Firstly, the TIR image is processed by opening- or closing-based gray-level morphological reconstruction (GMR) to smooth intricate background clutter while maintaining the intensity, shape, and contour features of ship target. Then, considering the intensity and contrast features, the fused saliency detection strategy including intensity foreground saliency map (IFSM) and brightness contrast saliency map (BCSM) is presented to highlight potential ship targets and suppress sea clutter. After that, an effective contour descriptor namely average eigenvalue measure of structure tensor (STAEM) is designed to characterize candidate ship targets, and the statistical shape knowledge is introduced to identify true ship targets from residual non-ship targets. Finally, the dual method is adopted to simultaneously detect both bright and dark ship targets in TIR image. Extensive experiments show that the proposed method outperforms the compared state-of-the-art methods, especially for infrared images with intricate sea clutter. Moreover, the proposed method can work stably for ship target with unknown brightness, variable quantities, sizes, and shapes.


2020 ◽  
Vol 12 (18) ◽  
pp. 2997 ◽  
Author(s):  
Tianwen Zhang ◽  
Xiaoling Zhang ◽  
Xiao Ke ◽  
Xu Zhan ◽  
Jun Shi ◽  
...  

Ship detection in synthetic aperture radar (SAR) images is becoming a research hotspot. In recent years, as the rise of artificial intelligence, deep learning has almost dominated SAR ship detection community for its higher accuracy, faster speed, less human intervention, etc. However, today, there is still a lack of a reliable deep learning SAR ship detection dataset that can meet the practical migration application of ship detection in large-scene space-borne SAR images. Thus, to solve this problem, this paper releases a Large-Scale SAR Ship Detection Dataset-v1.0 (LS-SSDD-v1.0) from Sentinel-1, for small ship detection under large-scale backgrounds. LS-SSDD-v1.0 contains 15 large-scale SAR images whose ground truths are correctly labeled by SAR experts by drawing support from the Automatic Identification System (AIS) and Google Earth. To facilitate network training, the large-scale images are directly cut into 9000 sub-images without bells and whistles, providing convenience for subsequent detection result presentation in large-scale SAR images. Notably, LS-SSDD-v1.0 has five advantages: (1) large-scale backgrounds, (2) small ship detection, (3) abundant pure backgrounds, (4) fully automatic detection flow, and (5) numerous and standardized research baselines. Last but not least, combined with the advantage of abundant pure backgrounds, we also propose a Pure Background Hybrid Training mechanism (PBHT-mechanism) to suppress false alarms of land in large-scale SAR images. Experimental results of ablation study can verify the effectiveness of the PBHT-mechanism. LS-SSDD-v1.0 can inspire related scholars to make extensive research into SAR ship detection methods with engineering application value, which is conducive to the progress of SAR intelligent interpretation technology.


2021 ◽  
Vol 13 (18) ◽  
pp. 3690
Author(s):  
Tianwen Zhang ◽  
Xiaoling Zhang ◽  
Jianwei Li ◽  
Xiaowo Xu ◽  
Baoyou Wang ◽  
...  

SAR Ship Detection Dataset (SSDD) is the first open dataset that is widely used to research state-of-the-art technology of ship detection from Synthetic Aperture Radar (SAR) imagery based on deep learning (DL). According to our investigation, up to 46.59% of the total 161 public reports confidently select SSDD to study DL-based SAR ship detection. Undoubtedly, this situation reveals the popularity and great influence of SSDD in the SAR remote sensing community. Nevertheless, the coarse annotations and ambiguous standards of use of its initial version both hinder fair methodological comparisons and effective academic exchanges. Additionally, its single-function horizontal-vertical rectangle bounding box (BBox) labels can no longer satisfy the current research needs of the rotatable bounding box (RBox) task and the pixel-level polygon segmentation task. Therefore, to address the above two dilemmas, in this review, advocated by the publisher of SSDD, we will make an official release of SSDD based on its initial version. SSDD’s official release version will cover three types: (1) a bounding box SSDD (BBox-SSDD), (2) a rotatable bounding box SSDD (RBox-SSDD), and (3) a polygon segmentation SSDD (PSeg-SSDD). We relabel ships in SSDD more carefully and finely, and then explicitly formulate some strict using standards, e.g., (1) the training-test division determination, (2) the inshore-offshore protocol, (3) the ship-size reasonable definition, (4) the determination of the densely distributed small ship samples, and (5) the determination of the densely parallel berthing at ports ship samples. These using standards are all formulated objectively based on the using differences of existing 75 (161 × 46.59%) public reports. They will be beneficial for fair method comparison and effective academic exchanges in the future. Most notably, we conduct a comprehensive data analysis on BBox-SSDD, RBox-SSDD, and PSeg-SSDD. Our analysis results can provide some valuable suggestions for possible future scholars to further elaborately design DL-based SAR ship detectors with higher accuracy and stronger robustness when using SSDD.


Sign in / Sign up

Export Citation Format

Share Document